These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15240478)

  • 21. A birefringence study of changes in myosin orientation during relaxation of skinned muscle fibers induced by photolytic ATP release.
    Peckham M; Ferenczi MA; Irving M
    Biophys J; 1994 Sep; 67(3):1141-8. PubMed ID: 7811926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation.
    Lan G; Sun SX
    Biophys J; 2005 Jun; 88(6):4107-17. PubMed ID: 15778440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct tests of muscle cross-bridge theories: predictions of a Brownian dumbbell model for position-dependent cross-bridge lifetimes and step sizes with an optically trapped actin filament.
    Smith DA
    Biophys J; 1998 Dec; 75(6):2996-3007. PubMed ID: 9826619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Depletion of phosphate in active muscle fibers probes actomyosin states within the powerstroke.
    Pate E; Franks-Skiba K; Cooke R
    Biophys J; 1998 Jan; 74(1):369-80. PubMed ID: 9449337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A single order-disorder transition generates tension during the Huxley-Simmons phase 2 in muscle.
    Davis JS; Harrington WF
    Biophys J; 1993 Nov; 65(5):1886-98. PubMed ID: 8298018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The myofilament elasticity and its effect on kinetics of force generation by the myosin motor.
    Piazzesi G; Dolfi M; Brunello E; Fusi L; Reconditi M; Bianco P; Linari M; Lombardi V
    Arch Biochem Biophys; 2014 Jun; 552-553():108-16. PubMed ID: 24631572
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the working stroke elicited by steps in length and temperature.
    Piazzesi G; Koubassova N; Irving M; Lombardi V
    Adv Exp Med Biol; 1998; 453():259-63; discussion 263-4. PubMed ID: 9889837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tilting of the light-chain region of myosin during step length changes and active force generation in skeletal muscle.
    Irving M; St Claire Allen T; Sabido-David C; Craik JS; Brandmeier B; Kendrick-Jones J; Corrie JE; Trentham DR; Goldman YE
    Nature; 1995 Jun; 375(6533):688-91. PubMed ID: 7791902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using optical tweezers to relate the chemical and mechanical cross-bridge cycles.
    Steffen W; Sleep J
    Philos Trans R Soc Lond B Biol Sci; 2004 Dec; 359(1452):1857-65. PubMed ID: 15647161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The cross-bridge cycle and skeletal muscle fatigue.
    Fitts RH
    J Appl Physiol (1985); 2008 Feb; 104(2):551-8. PubMed ID: 18162480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.
    Sleep J; Irving M; Burton K
    J Physiol; 2005 Mar; 563(Pt 3):671-87. PubMed ID: 15611023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin.
    Capitanio M; Canepari M; Cacciafesta P; Lombardi V; Cicchi R; Maffei M; Pavone FS; Bottinelli R
    Proc Natl Acad Sci U S A; 2006 Jan; 103(1):87-92. PubMed ID: 16371472
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Initiation of the power stroke in muscle: insights from the phosphate analog AlF4.
    Kraft T; Mählmann E; Mattei T; Brenner B
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13861-6. PubMed ID: 16174728
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of inorganic phosphate on muscle force development and energetics: challenges in modelling related to experimental uncertainties.
    Månsson A
    J Muscle Res Cell Motil; 2021 Mar; 42(1):33-46. PubMed ID: 31620962
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle.
    Offer G; Ranatunga KW
    J Physiol; 2015 Apr; 593(8):1997-2016. PubMed ID: 25564737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A strain-dependent ratchet model for [phosphate]- and [ATP]-dependent muscle contraction.
    Smith DA
    J Muscle Res Cell Motil; 1998 Feb; 19(2):189-211. PubMed ID: 9536445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of three-state docking of myosin S1 with actin in force generation.
    Geeves MA; Conibear PB
    Biophys J; 1995 Apr; 68(4 Suppl):194S-199S; discussion 199S-201S. PubMed ID: 7787067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of inorganic phosphate on force generation in single myofibrils from rabbit skeletal muscle.
    Tesi C; Colomo F; Nencini S; Piroddi N; Poggesi C
    Biophys J; 2000 Jun; 78(6):3081-92. PubMed ID: 10827985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.