These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15240499)

  • 1. Placing single-molecule T4 lysozyme enzymes on a bacterial cell surface: toward probing single-molecule enzymatic reaction in living cells.
    Hu D; Lu HP
    Biophys J; 2004 Jul; 87(1):656-61. PubMed ID: 15240499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bunching effect in single-molecule T4 lysozyme nonequilibrium conformational dynamics under enzymatic reactions.
    Wang Y; Lu HP
    J Phys Chem B; 2010 May; 114(19):6669-74. PubMed ID: 20369804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing protein multidimensional conformational fluctuations by single-molecule multiparameter photon stamping spectroscopy.
    Lu M; Lu HP
    J Phys Chem B; 2014 Oct; 118(41):11943-55. PubMed ID: 25222115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing time bunching effect in single-molecule enzyme conformational dynamics.
    Lu HP
    Phys Chem Chem Phys; 2011 Apr; 13(15):6734-49. PubMed ID: 21409227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing Multiple Pathways in T4 Lysozyme Substep Conformational Motions by Single-Molecule Enzymology and Modeling.
    Lu M; Lu HP
    J Phys Chem B; 2017 May; 121(19):5017-5024. PubMed ID: 28425708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule spectroscopy studies of conformational change dynamics in enzymatic reactions.
    Lu HP
    Curr Pharm Biotechnol; 2004 Jun; 5(3):261-9. PubMed ID: 15180547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Conformational rearrangements of bacteriophage T4 lysozyme during its binding to the inhibitor].
    Trontskiĭ AV; Chirgadze IuN; Brazhnikov EV
    Biokhimiia; 1979 Oct; 44(10):1864-76. PubMed ID: 389298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell wall substrate specificity of six different lysozymes and lysozyme inhibitory activity of bacterial extracts.
    Nakimbugwe D; Masschalck B; Deckers D; Callewaert L; Aertsen A; Michiels CW
    FEMS Microbiol Lett; 2006 Jun; 259(1):41-6. PubMed ID: 16684100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escape of a Small Molecule from Inside T4 Lysozyme by Multiple Pathways.
    Nunes-Alves A; Zuckerman DM; Arantes GM
    Biophys J; 2018 Mar; 114(5):1058-1066. PubMed ID: 29539393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of protein secondary structure and solvent accessibility using site-directed fluorescence labeling. Studies of T4 lysozyme using the fluorescent probe monobromobimane.
    Mansoor SE; McHaourab HS; Farrens DL
    Biochemistry; 1999 Dec; 38(49):16383-93. PubMed ID: 10587464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of domain motions in bacteriophage T4 lysozyme.
    Arnold GE; Manchester JI; Townsend BD; Ornstein RL
    J Biomol Struct Dyn; 1994 Oct; 12(2):457-74. PubMed ID: 7702780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule dynamics of lysozyme processing distinguishes linear and cross-linked peptidoglycan substrates.
    Choi Y; Moody IS; Sims PC; Hunt SR; Corso BL; Seitz DE; Blaszczak LC; Collins PG; Weiss GA
    J Am Chem Soc; 2012 Feb; 134(4):2032-5. PubMed ID: 22239748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of bacteriophage T4 tail lysozyme activity during the infection process.
    Kanamaru S; Ishiwata Y; Suzuki T; Rossmann MG; Arisaka F
    J Mol Biol; 2005 Mar; 346(4):1013-20. PubMed ID: 15701513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general and efficient method for the site-specific dual-labeling of proteins for single molecule fluorescence resonance energy transfer.
    Brustad EM; Lemke EA; Schultz PG; Deniz AA
    J Am Chem Soc; 2008 Dec; 130(52):17664-5. PubMed ID: 19108697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The non-enzymatic microbicidal activity of lysozymes.
    Düring K; Porsch P; Mahn A; Brinkmann O; Gieffers W
    FEBS Lett; 1999 Apr; 449(2-3):93-100. PubMed ID: 10338111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability.
    Wray JW; Baase WA; Lindstrom JD; Weaver LH; Poteete AR; Matthews BW
    J Mol Biol; 1999 Oct; 292(5):1111-20. PubMed ID: 10512706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the relationship between the metabolic and thermodynamic stabilities of T4 lysozymes. Measurements in eukaryotic cells.
    Inoue I; Rechsteiner M
    J Biol Chem; 1994 Nov; 269(46):29247-51. PubMed ID: 7961893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically Encoded Biosensor-Based Screening for Directed Bacteriophage T4 Lysozyme Evolution.
    Woo SG; Kim SK; Oh BR; Lee SG; Lee DH
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33212940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme.
    Kuroki R; Weaver LH; Matthews BW
    Science; 1993 Dec; 262(5142):2030-3. PubMed ID: 8266098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation.
    Perry LJ; Wetzel R
    Science; 1984 Nov; 226(4674):555-7. PubMed ID: 6387910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.