BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 15241311)

  • 1. Thermal profile of radiofrequency energy in the inferior glenohumeral ligament.
    Liao WL; Hedman TP; Vangsness CT
    Arthroscopy; 2004 Jul; 20(6):603-8. PubMed ID: 15241311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiofrequency energy-induced heating of bovine capsular tissue: Temperature changes produced by bipolar versus monopolar electrodes.
    Shellock FG
    Arthroscopy; 2001 Feb; 17(2):124-31. PubMed ID: 11172240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature in and around the scapholunate ligament during radiofrequency shrinkage: a cadaver study.
    Huber M; Loibl M; Eder C; Zellner J; Kujat R; Nerlich M; Gehmert S
    J Hand Surg Am; 2015 Feb; 40(2):259-65. PubMed ID: 25500298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiofrequency energy induced heating of bovine capsular tissue: in vitro assessment of newly developed, temperature-controlled monopolar and bipolar radiofrequency electrodes.
    Shellock FG
    Knee Surg Sports Traumatol Arthrosc; 2002 Jul; 10(4):254-9. PubMed ID: 12211186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermometric determination of cartilage matrix temperatures during thermal chondroplasty: comparison of bipolar and monopolar radiofrequency devices.
    Edwards RB; Lu Y; Rodriguez E; Markel MD
    Arthroscopy; 2002 Apr; 18(4):339-46. PubMed ID: 11951190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiofrequency energy induced heating of bovine articular cartilage: comparison between temperature-controlled, monopolar, and bipolar systems.
    Shellock FG
    Knee Surg Sports Traumatol Arthrosc; 2001 Nov; 9(6):392-7. PubMed ID: 11734879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of radiofrequency energy during arthroscopic surgery and its effects on intraarticular tissues.
    Horstman CL; McLaughlin RM
    Vet Comp Orthop Traumatol; 2006; 19(2):65-71. PubMed ID: 16810347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature changes associated with radiofrequency energy-induced heating of bovine capsular tissue: evaluation of bipolar RF electrodes.
    Shellock FG; Shields CL
    Arthroscopy; 2000; 16(4):348-58. PubMed ID: 10802471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of simulated shoulder thermal capsulorrhaphy using radiofrequency energy on glenohumeral fluid temperature.
    Lu Y; Bogdanske J; Lopez M; Cole BJ; Markel MD
    Arthroscopy; 2005 May; 21(5):592-6. PubMed ID: 15891727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monopolar radiofrequency use in deep gluteal space endoscopy: sciatic nerve safety and fluid temperature.
    Martin HD; Palmer IJ; Hatem M
    Arthroscopy; 2014 Jan; 30(1):60-4. PubMed ID: 24183195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of radiofrequency energy on glenohumeral fluid temperature during shoulder arthroscopy.
    Good CR; Shindle MK; Griffith MH; Wanich T; Warren RF
    J Bone Joint Surg Am; 2009 Feb; 91(2):429-34. PubMed ID: 19181988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Anterolateral Ligament Has Similar Biomechanical and Histologic Properties to the Inferior Glenohumeral Ligament.
    Smeets K; Slane J; Scheys L; Forsyth R; Claes S; Bellemans J
    Arthroscopy; 2017 May; 33(5):1028-1035.e1. PubMed ID: 28359668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of lateral thermal spread using monopolar and bipolar diathermy, and the bipolar vessel sealing system ThermoStapler™ during thyroidectomy.
    Brzeziński J; Kałużna-Markowska K; Naze M; Stróżyk G; Dedecjus M
    Pol Przegl Chir; 2011 Jul; 83(7):355-60. PubMed ID: 22166662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature profile of radiofrequency probe application in wrist arthroscopy: monopolar versus bipolar.
    Huber M; Eder C; Mueller M; Kujat R; Roll C; Nerlich M; Prantl L; Gehmert S
    Arthroscopy; 2013 Apr; 29(4):645-52. PubMed ID: 23380231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiofrequency energy effects on the mechanical properties of tendon and capsule.
    Nightingale EJ; Walsh WR
    Arthroscopy; 2005 Dec; 21(12):1479-85. PubMed ID: 16376239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination.
    Debski RE; Weiss JA; Newman WJ; Moore SM; McMahon PJ
    J Shoulder Elbow Surg; 2005; 14(1 Suppl S):24S-31S. PubMed ID: 15726084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External rotation of the glenohumeral joint: ligament restraints and muscle effects in the neutral and abducted positions.
    Kuhn JE; Huston LJ; Soslowsky LJ; Shyr Y; Blasier RB
    J Shoulder Elbow Surg; 2005; 14(1 Suppl S):39S-48S. PubMed ID: 15726086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of thermal heating on the length and histologic properties of the glenohumeral joint capsule.
    Hayashi K; Thabit G; Massa KL; Bogdanske JJ; Cooley AJ; Orwin JF; Markel MD
    Am J Sports Med; 1997; 25(1):107-12. PubMed ID: 9006703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors influencing intra-articular fluid temperature profiles with radiofrequency ablation.
    Zoric BB; Horn N; Braun S; Millett PJ
    J Bone Joint Surg Am; 2009 Oct; 91(10):2448-54. PubMed ID: 19797581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shoulder capsule shrinkage and consequences on shoulder movements.
    Gagey OJ; Boisrenoult P
    Clin Orthop Relat Res; 2004 Feb; (419):218-22. PubMed ID: 15021158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.