These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 15242174)
1. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Wu Q; VanEtten HD Mol Plant Microbe Interact; 2004 Jul; 17(7):798-804. PubMed ID: 15242174 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of pea genes by RNAi supports the involvement of two similar O-methyltransferases in the biosynthesis of (+)-pisatin and of chiral intermediates with a configuration opposite that found in (+)-pisatin. Kaimoyo E; VanEtten HD Phytochemistry; 2008 Jan; 69(1):76-87. PubMed ID: 17707445 [TBL] [Abstract][Full Text] [Related]
3. Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum sativum. Wu Q; Preisig CL; VanEtten HD Plant Mol Biol; 1997 Nov; 35(5):551-60. PubMed ID: 9349277 [TBL] [Abstract][Full Text] [Related]
4. Expression of the pisatin detoxifying genes (PDA) of Nectria haematococca in vitro and in planta. Hirschi K; VanEtten H Mol Plant Microbe Interact; 1996 Aug; 9(6):483-91. PubMed ID: 8755624 [TBL] [Abstract][Full Text] [Related]
5. Expression profiles of pea pathogenicity ( PEP) genes in vivo and in vitro, characterization of the flanking regions of the PEP cluster and evidence that the PEP cluster region resulted from horizontal gene transfer in the fungal pathogen Nectria haematococca. Liu X; Inlow M; VanEtten HD Curr Genet; 2003 Nov; 44(2):95-103. PubMed ID: 12925899 [TBL] [Abstract][Full Text] [Related]
6. Identification of new pisatin demethylase genes (PDA5 and PDA7) in Nectria haematococca and non-Mendelian segregation of pisatin demethylating ability and virulence on pea due to loss of chromosomal elements. Funnell DL; Matthews PS; VanEtten HD Fungal Genet Biol; 2002 Nov; 37(2):121-33. PubMed ID: 12409098 [TBL] [Abstract][Full Text] [Related]
7. Studies on the late steps of (+) pisatin biosynthesis: evidence for (-) enantiomeric intermediates. DiCenzo GL; VanEtten HD Phytochemistry; 2006 Apr; 67(7):675-83. PubMed ID: 16504226 [TBL] [Abstract][Full Text] [Related]
8. Characterization of pisatin-inducible cytochrome p450s in fungal pathogens of pea that detoxify the pea phytoalexin pisatin. George HL; VanEtten HD Fungal Genet Biol; 2001 Jun; 33(1):37-48. PubMed ID: 11407884 [TBL] [Abstract][Full Text] [Related]
9. An ABC transporter and a cytochrome P450 of Nectria haematococca MPVI are virulence factors on pea and are the major tolerance mechanisms to the phytoalexin pisatin. Coleman JJ; White GJ; Rodriguez-Carres M; Vanetten HD Mol Plant Microbe Interact; 2011 Mar; 24(3):368-76. PubMed ID: 21077772 [TBL] [Abstract][Full Text] [Related]
10. Identification and chromosomal locations of a family of cytochrome P-450 genes for pisatin detoxification in the fungus Nectria haematococca. Miao VP; Matthews DE; VanEtten HD Mol Gen Genet; 1991 Apr; 226(1-2):214-23. PubMed ID: 2034215 [TBL] [Abstract][Full Text] [Related]
11. Catalytic specificity of pea O-methyltransferases suggests gene duplication for (+)-pisatin biosynthesis. Akashi T; VanEtten HD; Sawada Y; Wasmann CC; Uchiyama H; Ayabe S Phytochemistry; 2006 Dec; 67(23):2525-30. PubMed ID: 17067644 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning of isoflavone reductase from pea (Pisum sativum L.): evidence for a 3R-isoflavanone intermediate in (+)-pisatin biosynthesis. Paiva NL; Sun Y; Dixon RA; VanEtten HD; Hrazdina G Arch Biochem Biophys; 1994 Aug; 312(2):501-10. PubMed ID: 8037464 [TBL] [Abstract][Full Text] [Related]
13. Location of pathogenicity genes on dispensable chromosomes in Nectria haematococca MPVI. VanEtten H; Funnell-Baerg D; Wasmann C; McCluskey K Antonie Van Leeuwenhoek; 1994; 65(3):263-7. PubMed ID: 7847894 [TBL] [Abstract][Full Text] [Related]
14. Sub-lethal levels of electric current elicit the biosynthesis of plant secondary metabolites. Kaimoyo E; Farag MA; Sumner LW; Wasmann C; Cuello JL; VanEtten H Biotechnol Prog; 2008; 24(2):377-84. PubMed ID: 18331050 [TBL] [Abstract][Full Text] [Related]
15. Analysis of determinants of binding and transcriptional activation of the pisatin-responsive DNA binding factor of Nectria haematococca. He J; Ruan Y; Straney D Mol Plant Microbe Interact; 1996 Apr; 9(3):171-9. PubMed ID: 8850087 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the gene encoding pisatin demethylase (FoPDA1) in Fusarium oxysporum. Coleman JJ; Wasmann CC; Usami T; White GJ; Temporini ED; McCluskey K; VanEtten HD Mol Plant Microbe Interact; 2011 Dec; 24(12):1482-91. PubMed ID: 22066900 [TBL] [Abstract][Full Text] [Related]
17. Origin of pisatin demethylase (PDA) in the genus Fusarium. Milani NA; Lawrence DP; Arnold AE; VanEtten HD Fungal Genet Biol; 2012 Nov; 49(11):933-42. PubMed ID: 22985693 [TBL] [Abstract][Full Text] [Related]
18. (+)-Pisatin biosynthesis: from (-) enantiomeric intermediates via an achiral 7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene. Celoy RM; VanEtten HD Phytochemistry; 2014 Feb; 98():120-7. PubMed ID: 24332213 [TBL] [Abstract][Full Text] [Related]
19. In vitro transcription from the Nectria haematococca PDA1 promoter in an homologous extract reflects in vivo pisatin-responsive regulation. Ruan Y; Straney DC Curr Genet; 1994 Dec; 27(1):46-53. PubMed ID: 7750146 [TBL] [Abstract][Full Text] [Related]
20. Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Liu CJ; Deavours BE; Richard SB; Ferrer JL; Blount JW; Huhman D; Dixon RA; Noel JP Plant Cell; 2006 Dec; 18(12):3656-69. PubMed ID: 17172354 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]