BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15242229)

  • 1. A pilot study on phosphate and nitrate removal from secondary wastewater effluent using a selective ion exchange process.
    Kney AD; Zhao D
    Environ Technol; 2004 May; 25(5):533-42. PubMed ID: 15242229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of nitrate and phosphorus from hydroponic wastewater using a hybrid denitrification filter (HDF).
    Park JB; Craggs RJ; Sukias JP
    Bioresour Technol; 2009 Jul; 100(13):3175-9. PubMed ID: 19303287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal and recovery of phosphate from municipal wastewaters using a polymeric anion exchanger bound with hydrated ferric oxide nanoparticles.
    Martin BD; Parsons SA; Jefferson B
    Water Sci Technol; 2009; 60(10):2637-45. PubMed ID: 19923770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid anion exchanger for trace phosphate removal from water and wastewater.
    Blaney LM; Cinar S; SenGupta AK
    Water Res; 2007 Apr; 41(7):1603-13. PubMed ID: 17306856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous removal of nitrate/phosphate with bimetallic nanoparticles of Fe coupled with copper or nickel supported on chelating resin.
    Shen Z; Dong X; Shi J; Ma Y; Liu D; Fan J
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16568-16576. PubMed ID: 30989609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beneficial phosphate recovery from reverse osmosis (RO) concentrate of an integrated membrane system using polymeric ligand exchanger (PLE).
    Kumar M; Badruzzaman M; Adham S; Oppenheimer J
    Water Res; 2007 May; 41(10):2211-9. PubMed ID: 17379269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation-electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent.
    Mahvi AH; Ebrahimi SJ; Mesdaghinia A; Gharibi H; Sowlat MH
    J Hazard Mater; 2011 Sep; 192(3):1267-74. PubMed ID: 21741172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater.
    Park JY; Byun HJ; Choi WH; Kang WH
    Chemosphere; 2008 Feb; 70(8):1429-37. PubMed ID: 17950778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous removal of nitrogen and phosphorus from wastewater by means of FeS-based autotrophic denitrification.
    Li R; Niu J; Zhan X; Liu B
    Water Sci Technol; 2013; 67(12):2761-7. PubMed ID: 23787315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphate removal and recovery by a novel electrolytic process.
    Sakakibara Y; Nakajima H
    Water Sci Technol; 2002; 46(11-12):147-52. PubMed ID: 12523746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous removal of nitrate and phosphate using cross-flow micellar-enhanced ultrafiltration (MEUF).
    Kim BK; Baek K; Yang JW
    Water Sci Technol; 2004; 50(6):227-34. PubMed ID: 15537011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater.
    Velicu M; Fu H; Suri RP; Woods K
    J Hazard Mater; 2007 Sep; 148(3):599-605. PubMed ID: 17459583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological nitrogen and organic matter removal from tannery wastewater in pilot plant operations in Ethiopia.
    Leta S; Assefa F; Gumaelius L; Dalhammar G
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):333-9. PubMed ID: 15316686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of a passive sampler for the determination of time averaged concentrations of nitrate and phosphate in water.
    Knutsson J; Rauch S; Morrison GM
    Environ Sci Process Impacts; 2013 May; 15(5):955-62. PubMed ID: 23515501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term phosphate removal by the calcium-silicate material Polonite in wastewater filtration systems.
    Renman A; Renman G
    Chemosphere; 2010 Apr; 79(6):659-64. PubMed ID: 20219233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrate removal from electro-oxidized landfill leachate by ion exchange.
    Primo O; Rivero MJ; Urtiaga AM; Ortiz I
    J Hazard Mater; 2009 May; 164(1):389-93. PubMed ID: 18805640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced phosphate selectivity from wastewater using copper-loaded chelating resin functionalized with polyethylenimine.
    An B; Nam J; Choi JW; Hong SW; Lee SH
    J Colloid Interface Sci; 2013 Nov; 409():129-34. PubMed ID: 23988081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris.
    Ruiz J; Alvarez P; Arbib Z; Garrido C; Barragán J; Perales JA
    Int J Phytoremediation; 2011 Oct; 13(9):884-96. PubMed ID: 21972511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameters affecting biological phosphate removal from wastewaters.
    Mulkerrins D; Dobson AD; Colleran E
    Environ Int; 2004 Apr; 30(2):249-59. PubMed ID: 14749113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of phosphate and nitrate anions on ammonium-functionalized MCM-48: effects of experimental conditions.
    Saad R; Belkacemi K; Hamoudi S
    J Colloid Interface Sci; 2007 Jul; 311(2):375-81. PubMed ID: 17451734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.