These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 15242280)

  • 1. Effects of drought stress on legume symbiotic nitrogen fixation: physiological mechanisms.
    Serraj R
    Indian J Exp Biol; 2003 Oct; 41(10):1136-41. PubMed ID: 15242280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.).
    Almeida JP; Hartwig UA; Frehner M; Nösberger J; Lüscher A
    J Exp Bot; 2000 Jul; 51(348):1289-97. PubMed ID: 10937705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating interactive effects of symbiotic nitrogen fixation, carbon dioxide elevation, and climatic change on legume growth.
    Yu M; Gao Q; Shaffer MJ
    J Environ Qual; 2002; 31(2):634-41. PubMed ID: 11931456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf ureide degradation and N(2) fixation tolerance to water deficit in soybean.
    Vadez V; Sinclair TR
    J Exp Bot; 2001 Jan; 52(354):153-9. PubMed ID: 11181724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.
    Nasr Esfahani M; Sulieman S; Schulze J; Yamaguchi-Shinozaki K; Shinozaki K; Tran LS
    Plant J; 2014 Sep; 79(6):964-80. PubMed ID: 24947137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of inhibition of N2 fixation and ureide accumulation under water deficit in four common bean genotypes of contrasting drought tolerance.
    Coleto I; Pineda M; Rodiño AP; De Ron AM; Alamillo JM
    Ann Bot; 2014 May; 113(6):1071-82. PubMed ID: 24638821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumes.
    Luciński R; Polcyn W; Ratajczak L
    Acta Biochim Pol; 2002; 49(2):537-46. PubMed ID: 12362996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of new up-regulated genes under drought stress in soybean nodules.
    Clement M; Lambert A; Herouart D; Boncompagni E
    Gene; 2008 Dec; 426(1-2):15-22. PubMed ID: 18817859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in Rhizobium-legume symbiosis.
    Randhawa GS; Shubha ; Singh NK; Kumar A; Bhalla A
    Indian J Exp Biol; 2003 Oct; 41(10):1184-97. PubMed ID: 15242284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago truncatula under drought and recovery.
    Larrainzar E; Wienkoop S; Scherling C; Kempa S; Ladrera R; Arrese-Igor C; Weckwerth W; González EM
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1565-76. PubMed ID: 19888822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy requirement for symbiotic nitrogen fixation.
    Silsbury JH
    Nature; 1977 May; 267(5607):149-50. PubMed ID: 16073424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Update on ureide degradation in legumes.
    Todd CD; Tipton PA; Blevins DG; Piedras P; Pineda M; Polacco JC
    J Exp Bot; 2006; 57(1):5-12. PubMed ID: 16317038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean.
    Ladrera R; Marino D; Larrainzar E; González EM; Arrese-Igor C
    Plant Physiol; 2007 Oct; 145(2):539-46. PubMed ID: 17720761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of drought on the growth and survival of the stress-tolerant bacterium Rhizobium sp. NBRI2505 sesbania and its drought-sensitive transposon Tn 5 mutant.
    Rehman A; Nautiyal CS
    Curr Microbiol; 2002 Nov; 45(5):368-77. PubMed ID: 12232669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Split-root systems applied to the study of the legume-rhizobial symbiosis: what have we learned?
    Larrainzar E; Gil-Quintana E; Arrese-Igor C; González EM; Marino D
    J Integr Plant Biol; 2014 Dec; 56(12):1118-24. PubMed ID: 24975457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival, nodulation and N2 fixation ability of root nodule bacteria under different nutritional regimes.
    Bakshi D; Mukhopadhyay A; Sinhababu A; Pal SC; Mandal NC
    Indian J Exp Biol; 2006 Nov; 44(11):918-23. PubMed ID: 17205715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of biotic and abiotic constraints on the symbiosis between rhizobia and the tropical leguminous trees Acacia and Prosopis.
    Räsänen LA; Lindström K
    Indian J Exp Biol; 2003 Oct; 41(10):1142-59. PubMed ID: 15242281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen control of bacterial signal production in Rhizobium meliloti-alfalfa symbiosis.
    Dusha I
    Indian J Exp Biol; 2002 Sep; 40(9):981-8. PubMed ID: 12587724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis.
    Pauly N; Pucciariello C; Mandon K; Innocenti G; Jamet A; Baudouin E; Hérouart D; Frendo P; Puppo A
    J Exp Bot; 2006; 57(8):1769-76. PubMed ID: 16698817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early signaling, synthesis, transport and metabolism of ureides.
    Baral B; Teixeira da Silva JA; Izaguirre-Mayoral ML
    J Plant Physiol; 2016 Apr; 193():97-109. PubMed ID: 26967003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.