BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 15242712)

  • 1. Impact of population age structure on Wolbachia transgene driver efficacy: ecologically complex factors and release of genetically modified mosquitoes.
    Rasgon JL; Scott TW
    Insect Biochem Mol Biol; 2004 Jul; 34(7):707-13. PubMed ID: 15242712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wolbachia and cytoplasmic incompatibility in mosquitoes.
    Sinkins SP
    Insect Biochem Mol Biol; 2004 Jul; 34(7):723-9. PubMed ID: 15242714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanos (nos) genes of the vector mosquitoes, Anopheles gambiae, Anopheles stephensi and Aedes aegypti.
    Calvo E; Walter M; Adelman ZN; Jimenez A; Onal S; Marinotti O; James AA
    Insect Biochem Mol Biol; 2005 Jul; 35(7):789-98. PubMed ID: 15894194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cage trials using an endogenous meiotic drive gene in the mosquito Aedes aegypti to promote population replacement.
    Cha SJ; Mori A; Chadee DD; Severson DW
    Am J Trop Med Hyg; 2006 Jan; 74(1):62-8. PubMed ID: 16407347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of gene drive on containment of transgenic mosquitoes.
    Marshall JM
    J Theor Biol; 2009 May; 258(2):250-65. PubMed ID: 19490857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of the Wolbachia surface protein gene wspB by a transposable element in mosquitoes of the Culex pipiens complex (Diptera, Culicidae).
    Sanogo YO; Dobson SL; Bordenstein SR; Novak RJ
    Insect Mol Biol; 2007 Apr; 16(2):143-54. PubMed ID: 17298560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using predictive models to optimize Wolbachia-based strategies for vector-borne disease control.
    Rasgon JL
    Adv Exp Med Biol; 2008; 627():114-25. PubMed ID: 18510019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.
    Arredondo-Jiménez JI; Valdez-Delgado KM
    Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wolbachia establishment and invasion in an Aedes aegypti laboratory population.
    Xi Z; Khoo CC; Dobson SL
    Science; 2005 Oct; 310(5746):326-8. PubMed ID: 16224027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population differentiation and Wolbachia phylogeny in mosquitoes of the Aedes scutellaris group.
    Behbahani A; Dutton TJ; Davies N; Townson H; Sinkins SP
    Med Vet Entomol; 2005 Mar; 19(1):66-71. PubMed ID: 15752179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved accuracy of the transcriptional profiling method of age grading in Aedes aegypti mosquitoes under laboratory and semi-field cage conditions and in the presence of Wolbachia infection.
    Caragata EP; Poinsignon A; Moreira LA; Johnson PH; Leong YS; Ritchie SA; O'Neill SL; McGraw EA
    Insect Mol Biol; 2011 Apr; 20(2):215-24. PubMed ID: 21114562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal control strategy of malaria vector using genetically modified mosquitoes.
    Rafikov M; Bevilacqua L; Wyse AP
    J Theor Biol; 2009 Jun; 258(3):418-25. PubMed ID: 18761018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular divergence of the mitochondrial cytochrome oxidase II gene in three mosquitoes.
    Jinfu W; Chaohui H
    J Am Mosq Control Assoc; 2002 Dec; 18(4):301-6. PubMed ID: 12542187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteriophage WO-B and Wolbachia in natural mosquito hosts: infection incidence, transmission mode and relative density.
    Chauvatcharin N; Ahantarig A; Baimai V; Kittayapong P
    Mol Ecol; 2006 Aug; 15(9):2451-61. PubMed ID: 16842419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemiology of tree-hole breeding mosquitoes in the tropical rainforest of Imo State, south-east Nigeria.
    Anosike JC; Nwoke BE; Okere AN; Oku EE; Asor JE; Emmy-Egbe IO; Adimike DA
    Ann Agric Environ Med; 2007; 14(1):31-8. PubMed ID: 17655174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wolbachia symbionts in mosquitoes: Intra- and intersupergroup recombinations, horizontal transmission and evolution.
    Shaikevich E; Bogacheva A; Rakova V; Ganushkina L; Ilinsky Y
    Mol Phylogenet Evol; 2019 May; 134():24-34. PubMed ID: 30708172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of natural Wolbachia infection in mosquitoes (Diptera: Culicidae) from the Cape Verde islands.
    da Moura AJF; Valadas V; Da Veiga Leal S; Montalvo Sabino E; Sousa CA; Pinto J
    Parasit Vectors; 2023 Apr; 16(1):142. PubMed ID: 37098535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A preliminary survey for Wolbachia and bacteriophage WO infections in Indian mosquitoes (Diptera: Culicidae).
    Ravikumar H; Ramachandraswamy N; Sampathkumar S; Prakash BM; Huchesh HC; Uday J; Puttaraju HP
    Trop Biomed; 2010 Dec; 27(3):384-93. PubMed ID: 21399578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing mosquito-Wolbachia symbiosis for vector and disease control.
    Bourtzis K; Dobson SL; Xi Z; Rasgon JL; Calvitti M; Moreira LA; Bossin HC; Moretti R; Baton LA; Hughes GL; Mavingui P; Gilles JR
    Acta Trop; 2014 Apr; 132 Suppl():S150-63. PubMed ID: 24252486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposable element insertion location bias and the dynamics of gene drive in mosquito populations.
    Rasgon JL; Gould F
    Insect Mol Biol; 2005 Oct; 14(5):493-500. PubMed ID: 16164605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.