BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15242761)

  • 21. Lying low but ready for action: the quiescent muscle satellite cell.
    Montarras D; L'honoré A; Buckingham M
    FEBS J; 2013 Sep; 280(17):4036-50. PubMed ID: 23735050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Doublecortin marks a new population of transiently amplifying muscle progenitor cells and is required for myofiber maturation during skeletal muscle regeneration.
    Ogawa R; Ma Y; Yamaguchi M; Ito T; Watanabe Y; Ohtani T; Murakami S; Uchida S; De Gaspari P; Uezumi A; Nakamura M; Miyagoe-Suzuki Y; Tsujikawa K; Hashimoto N; Braun T; Tanaka T; Takeda S; Yamamoto H; Fukada S
    Development; 2015 Jan; 142(1):51-61. PubMed ID: 25480916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of static magnetic fields on human myoblast cell cultures.
    Stern-Straeter J; Bonaterra GA; Kassner SS; Faber A; Sauter A; Schulz JD; Hörmann K; Kinscherf R; Goessler UR
    Int J Mol Med; 2011 Dec; 28(6):907-17. PubMed ID: 21837362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo activation of STAT3 signaling in satellite cells and myofibers in regenerating rat skeletal muscles.
    Kami K; Senba E
    J Histochem Cytochem; 2002 Dec; 50(12):1579-89. PubMed ID: 12486080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calpain 3 Expression Pattern during Gastrocnemius Muscle Atrophy and Regeneration Following Sciatic Nerve Injury in Rats.
    Wu R; Yan Y; Yao J; Liu Y; Zhao J; Liu M
    Int J Mol Sci; 2015 Nov; 16(11):26927-35. PubMed ID: 26569227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
    Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts.
    Lindon C; Montarras D; Pinset C
    J Cell Biol; 1998 Jan; 140(1):111-8. PubMed ID: 9425159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts.
    Kitzmann M; Fernandez A
    Cell Mol Life Sci; 2001 Apr; 58(4):571-9. PubMed ID: 11361092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of events associated with serum deprivation-induced apoptosis in C3H/Sol8 muscle satellite cells.
    Mampuru LJ; Chen SJ; Kalenik JL; Bradley ME; Lee TC
    Exp Cell Res; 1996 Aug; 226(2):372-80. PubMed ID: 8806441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity-dependent gene regulation in conditionally-immortalized muscle precursor cell lines.
    Macpherson PC; Suhr ST; Goldman D
    J Cell Biochem; 2004 Mar; 91(4):821-39. PubMed ID: 14991773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nordihydroguaiaretic acid (NDGA) blocks the differentiation of C2C12 myoblast cells.
    Ito H; Ueda H; Iwamoto I; Inaguma Y; Takizawa T; Asano T; Kato K
    J Cell Physiol; 2005 Mar; 202(3):874-9. PubMed ID: 15389564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anchorage-dependent control of muscle-specific gene expression in C2C12 mouse myoblasts.
    Milasincic DJ; Dhawan J; Farmer SR
    In Vitro Cell Dev Biol Anim; 1996 Feb; 32(2):90-9. PubMed ID: 8907122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sox15 is required for skeletal muscle regeneration.
    Lee HJ; Göring W; Ochs M; Mühlfeld C; Steding G; Paprotta I; Engel W; Adham IM
    Mol Cell Biol; 2004 Oct; 24(19):8428-36. PubMed ID: 15367664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exogenous hepatocyte growth factor inhibits myoblast differentiation by inducing myf5 expression and suppressing myoD expression in an organ culture system of embryonic mouse tongue.
    Yamane A; Amano O; Urushiyama T; Nagata J; Akutsu S; Fukui T; Diekwisch TG
    Eur J Oral Sci; 2004 Apr; 112(2):177-81. PubMed ID: 15056116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation, culture and immunostaining of skeletal muscle fibres to study myogenic progression in satellite cells.
    Moyle LA; Zammit PS
    Methods Mol Biol; 2014; 1210():63-78. PubMed ID: 25173161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nrf2 augments skeletal muscle regeneration after ischaemia-reperfusion injury.
    Al-Sawaf O; Fragoulis A; Rosen C; Keimes N; Liehn EA; Hölzle F; Kan YW; Pufe T; Sönmez TT; Wruck CJ
    J Pathol; 2014 Dec; 234(4):538-47. PubMed ID: 25111334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Failure of Myf5 to support myogenic differentiation without myogenin, MyoD, and MRF4.
    Valdez MR; Richardson JA; Klein WH; Olson EN
    Dev Biol; 2000 Mar; 219(2):287-98. PubMed ID: 10694423
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Satellite cell activity in muscle regeneration after contusion in rats.
    Srikuea R; Pholpramool C; Kitiyanant Y; Yimlamai T
    Clin Exp Pharmacol Physiol; 2010 Nov; 37(11):1078-86. PubMed ID: 20726992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos.
    Pownall ME; Gustafsson MK; Emerson CP
    Annu Rev Cell Dev Biol; 2002; 18():747-83. PubMed ID: 12142270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration.
    Cornelison DD; Filla MS; Stanley HM; Rapraeger AC; Olwin BB
    Dev Biol; 2001 Nov; 239(1):79-94. PubMed ID: 11784020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.