BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 15242767)

  • 1. DNA methylation control of tissue polarity and cellular differentiation in the mammary epithelium.
    Plachot C; Lelièvre SA
    Exp Cell Res; 2004 Aug; 298(1):122-32. PubMed ID: 15242767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning.
    Hinshelwood RA; Melki JR; Huschtscha LI; Paul C; Song JZ; Stirzaker C; Reddel RR; Clark SJ
    Hum Mol Genet; 2009 Aug; 18(16):3098-109. PubMed ID: 19477956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylase activity is required for embryonic stem cell differentiation.
    Lee JH; Hart SR; Skalnik DG
    Genesis; 2004 Jan; 38(1):32-8. PubMed ID: 14755802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription.
    Zhang Y; Fatima N; Dufau ML
    Mol Cell Biol; 2005 Sep; 25(18):7929-39. PubMed ID: 16135786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation.
    Brero A; Easwaran HP; Nowak D; Grunewald I; Cremer T; Leonhardt H; Cardoso MC
    J Cell Biol; 2005 Jun; 169(5):733-43. PubMed ID: 15939760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA methylation and histone acetylation patterns in cultured bovine fibroblasts for nuclear transfer.
    Giraldo AM; Lynn JW; Purpera MN; Godke RA; Bondioli KR
    Mol Reprod Dev; 2007 Dec; 74(12):1514-24. PubMed ID: 17440941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MBD2 and MeCP2 regulate distinct transitions in the stage-specific differentiation of olfactory receptor neurons.
    Macdonald JL; Verster A; Berndt A; Roskams AJ
    Mol Cell Neurosci; 2010 May; 44(1):55-67. PubMed ID: 20188178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MeCP2 and MBD2 expression during normal and pathological growth of the human mammary gland.
    Billard LM; Magdinier F; Lenoir GM; Frappart L; Dante R
    Oncogene; 2002 Apr; 21(17):2704-12. PubMed ID: 11965543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation.
    Song MR; Ghosh A
    Nat Neurosci; 2004 Mar; 7(3):229-35. PubMed ID: 14770186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic interplay between histone modifications and DNA methylation in gene silencing.
    Vaissière T; Sawan C; Herceg Z
    Mutat Res; 2008; 659(1-2):40-8. PubMed ID: 18407786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair.
    Zhou H; Madden BJ; Muddiman DC; Zhang Z
    Biochemistry; 2006 Mar; 45(9):2852-61. PubMed ID: 16503640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. E2F-HDAC complexes negatively regulate the tumor suppressor gene ARHI in breast cancer.
    Lu Z; Luo RZ; Peng H; Huang M; Nishmoto A; Hunt KK; Helin K; Liao WS; Yu Y
    Oncogene; 2006 Jan; 25(2):230-9. PubMed ID: 16158053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene silencing. Methylation meets acetylation.
    Bestor TH
    Nature; 1998 May; 393(6683):311-2. PubMed ID: 9620794
    [No Abstract]   [Full Text] [Related]  

  • 14. Transcriptional silencing of hedgehog-interacting protein by CpG hypermethylation and chromatic structure in human gastrointestinal cancer.
    Taniguchi H; Yamamoto H; Akutsu N; Nosho K; Adachi Y; Imai K; Shinomura Y
    J Pathol; 2007 Oct; 213(2):131-9. PubMed ID: 17724792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status.
    Travaglini L; Vian L; Billi M; Grignani F; Nervi C
    Int J Biochem Cell Biol; 2009 Jan; 41(1):225-34. PubMed ID: 18789398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Epigenetic regulation involved in fate specification of neural cells].
    Sanosaka T; Tsujimura K; Nakashima K
    Tanpakushitsu Kakusan Koso; 2008 Mar; 53(4 Suppl):331-7. PubMed ID: 21089300
    [No Abstract]   [Full Text] [Related]  

  • 17. Epigenetic modulation of tumor suppressor CCAAT/enhancer binding protein alpha activity in lung cancer.
    Tada Y; Brena RM; Hackanson B; Morrison C; Otterson GA; Plass C
    J Natl Cancer Inst; 2006 Mar; 98(6):396-406. PubMed ID: 16537832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl deficiency causes reduction of the methyl-CpG-binding protein, MeCP2, in rat liver.
    Esfandiari F; Green R; Cotterman RF; Pogribny IP; James SJ; Miller JW
    Carcinogenesis; 2003 Dec; 24(12):1935-40. PubMed ID: 12949043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in epigenetic modifications during oocyte growth in mice.
    Kageyama S; Liu H; Kaneko N; Ooga M; Nagata M; Aoki F
    Reproduction; 2007 Jan; 133(1):85-94. PubMed ID: 17244735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concordant epigenetic silencing of transforming growth factor-beta signaling pathway genes occurs early in breast carcinogenesis.
    Hinshelwood RA; Huschtscha LI; Melki J; Stirzaker C; Abdipranoto A; Vissel B; Ravasi T; Wells CA; Hume DA; Reddel RR; Clark SJ
    Cancer Res; 2007 Dec; 67(24):11517-27. PubMed ID: 18089780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.