These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 15243707)
1. A QTL that enhances and broadens Bt insect resistance in soybean. Walker DR; Narvel JM; Boerma HR; All JN; Parrott WA Theor Appl Genet; 2004 Sep; 109(5):1051-7. PubMed ID: 15243707 [TBL] [Abstract][Full Text] [Related]
2. Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean. Ortega MA; All JN; Boerma HR; Parrott WA Theor Appl Genet; 2016 Apr; 129(4):703-715. PubMed ID: 26724806 [TBL] [Abstract][Full Text] [Related]
3. Effects of defoliating insect resistance QTLs and a cry1Ac transgene in soybean near-isogenic lines. Zhu S; Walker DR; Boerma HR; All JN; Parrott WA Theor Appl Genet; 2008 Feb; 116(4):455-63. PubMed ID: 18064435 [TBL] [Abstract][Full Text] [Related]
4. Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae). Walker DR; All JN; McPherson RM; Boerma HR; Parrott WA J Econ Entomol; 2000 Jun; 93(3):613-22. PubMed ID: 10902306 [TBL] [Abstract][Full Text] [Related]
5. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens. Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958 [No Abstract] [Full Text] [Related]
6. High levels of biological activity of Cry1Ac protein expressed on MON 87701 × MON 89788 soybean against Heliothis virescens (Lepidoptera:Noctuidae). Bernardi O; Dourado PM; Carvalho RA; Martinelli S; Berger GU; Head GP; Omoto C Pest Manag Sci; 2014 Apr; 70(4):588-94. PubMed ID: 23687086 [TBL] [Abstract][Full Text] [Related]
7. Field-Evolved Resistance in Corn Earworm to Cry Proteins Expressed by Transgenic Sweet Corn. Dively GP; Venugopal PD; Finkenbinder C PLoS One; 2016; 11(12):e0169115. PubMed ID: 28036388 [TBL] [Abstract][Full Text] [Related]
8. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Stewart CN; Adang MJ; All JN; Boerma HR; Cardineau G; Tucker D; Parrott WA Plant Physiol; 1996 Sep; 112(1):121-9. PubMed ID: 8819322 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of transgenic soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene for suppressing lepidopteran population densities and crop injury. McPherson RM; MacRae TC J Econ Entomol; 2009 Aug; 102(4):1640-8. PubMed ID: 19736779 [TBL] [Abstract][Full Text] [Related]
10. Monitoring Bacillus thuringiensis-susceptibility in insect pests that occur in large geographies: how to get the best information when two countries are involved. Blanco CA; Perera OP; Boykin D; Abel C; Gore J; Matten SR; Ramírez-Sagahon JC; Terán-Vargas AP J Invertebr Pathol; 2007 Jul; 95(3):201-7. PubMed ID: 17499760 [TBL] [Abstract][Full Text] [Related]
11. Monitoring and adaptive resistance management in Australia for Bt-cotton: current status and future challenges. Downes S; Mahon R; Olsen K J Invertebr Pathol; 2007 Jul; 95(3):208-13. PubMed ID: 17470372 [TBL] [Abstract][Full Text] [Related]
12. Expression of Cry1Ac in transgenic Bt soybean lines and their efficiency in controlling lepidopteran pests. Yu H; Li Y; Li X; Romeis J; Wu K Pest Manag Sci; 2013 Dec; 69(12):1326-33. PubMed ID: 23564718 [TBL] [Abstract][Full Text] [Related]
13. Negative cross-resistance between structurally different Bacillus thuringiensis toxins may favor resistance management of soybean looper in transgenic Bt cultivars. Rodrigues-Silva N; Canuto AF; Oliveira DF; Teixeira AF; Santos-Amaya OF; Picanço MC; Pereira EJG Sci Rep; 2019 Jan; 9(1):199. PubMed ID: 30655612 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of Soybean's Event DAS-81419-2 Expressing Cry1F and Cry1Ac to Manage Key Tropical Lepidopteran Pests Under Field Conditions in Brazil. Marques LH; Castro BA; Rossetto J; Silva OA; Moscardini VF; Zobiole LH; Santos AC; Valverde-Garcia P; Babcock JM; Rule DM; Fernandes OA J Econ Entomol; 2016 Aug; 109(4):1922-8. PubMed ID: 27401112 [TBL] [Abstract][Full Text] [Related]
15. Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Yang Y; Chen H; Wu Y; Yang Y; Wu S Appl Environ Microbiol; 2007 Nov; 73(21):6939-44. PubMed ID: 17827322 [TBL] [Abstract][Full Text] [Related]
16. Disruption of a cadherin gene associated with resistance to Cry1Ac {delta}-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Xu X; Yu L; Wu Y Appl Environ Microbiol; 2005 Feb; 71(2):948-54. PubMed ID: 15691952 [TBL] [Abstract][Full Text] [Related]
17. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India. Gujar GT; Kalia V; Kumari A; Singh BP; Mittal A; Nair R; Mohan M J Invertebr Pathol; 2007 Jul; 95(3):214-9. PubMed ID: 17475275 [TBL] [Abstract][Full Text] [Related]
18. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm. Tabashnik BE; Wu K; Wu Y J Invertebr Pathol; 2012 Jul; 110(3):301-6. PubMed ID: 22537835 [TBL] [Abstract][Full Text] [Related]
19. Identification of a gene associated with Bt resistance in Heliothis virescens. Gahan LJ; Gould F; Heckel DG Science; 2001 Aug; 293(5531):857-60. PubMed ID: 11486086 [TBL] [Abstract][Full Text] [Related]
20. High Susceptibility to Cry1Ac and Low Resistance Allele Frequency Reduce the Risk of Resistance of Helicoverpa armigers to Bt Soybean in Brazil. Dourado PM; Bacalhau FB; Amado D; Carvalho RA; Martinelli S; Head GP; Omoto C PLoS One; 2016; 11(8):e0161388. PubMed ID: 27532632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]