BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 15243732)

  • 1. Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles.
    Kido Thompson A; Stein RB
    Exp Brain Res; 2004 Dec; 159(4):491-500. PubMed ID: 15243732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-term effects of functional electrical stimulation on spinal excitatory and inhibitory reflexes in ankle extensor and flexor muscles.
    Thompson AK; Doran B; Stein RB
    Exp Brain Res; 2006 Apr; 170(2):216-26. PubMed ID: 16317575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive.
    Khaslavskaia S; Sinkjaer T
    Exp Brain Res; 2005 May; 162(4):497-502. PubMed ID: 15702321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials.
    Knash ME; Kido A; Gorassini M; Chan KM; Stein RB
    Exp Brain Res; 2003 Dec; 153(3):366-77. PubMed ID: 14610631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency.
    Mang CS; Lagerquist O; Collins DF
    Exp Brain Res; 2010 May; 203(1):11-20. PubMed ID: 20217400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans.
    Perez MA; Lungholt BK; Nyborg K; Nielsen JB
    Exp Brain Res; 2004 Nov; 159(2):197-205. PubMed ID: 15549279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex.
    Capaday C; Lavoie BA; Barbeau H; Schneider C; Bonnard M
    J Neurophysiol; 1999 Jan; 81(1):129-39. PubMed ID: 9914274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does functional electrical stimulation for foot drop strengthen corticospinal connections?
    Everaert DG; Thompson AK; Chong SL; Stein RB
    Neurorehabil Neural Repair; 2010 Feb; 24(2):168-77. PubMed ID: 19861590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man.
    Petersen N; Morita H; Nielsen J
    J Physiol; 1999 Oct; 520 Pt 2(Pt 2):605-19. PubMed ID: 10523426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve.
    Khaslavskaia S; Ladouceur M; Sinkjaer T
    Exp Brain Res; 2002 Aug; 145(3):309-15. PubMed ID: 12136380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking.
    Iglesias C; Nielsen JB; Marchand-Pauvert V
    Eur J Neurosci; 2008 Oct; 28(7):1351-61. PubMed ID: 18973562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transspinal stimulation decreases corticospinal excitability and alters the function of spinal locomotor networks.
    Pulverenti TS; Islam MA; Alsalman O; Murray LM; Harel NY; Knikou M
    J Neurophysiol; 2019 Dec; 122(6):2331-2343. PubMed ID: 31577515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive common peroneal nerve stimulation increases ankle dorsiflexor motor evoked potentials in incomplete spinal cord lesions.
    Thompson AK; Lapallo B; Duffield M; Abel BM; Pomerantz F
    Exp Brain Res; 2011 Apr; 210(1):143-52. PubMed ID: 21360230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterned sensory stimulation induces plasticity in reciprocal ia inhibition in humans.
    Perez MA; Field-Fote EC; Floeter MK
    J Neurosci; 2003 Mar; 23(6):2014-8. PubMed ID: 12657659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peripheral sensory activation of cortical circuits in the leg motor cortex of man.
    Roy FD; Gorassini MA
    J Physiol; 2008 Sep; 586(17):4091-105. PubMed ID: 18599540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the potential role of the corticospinal tract in the control and progressive adaptation of the soleus h-reflex during backward walking.
    Ung RV; Imbeault MA; Ethier C; Brizzi L; Capaday C
    J Neurophysiol; 2005 Aug; 94(2):1133-42. PubMed ID: 15829598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-latency, inhibitory spinal pathway to ankle flexors activated by homonymous group 1 afferents.
    Zewdie ET; Roy FD; Okuma Y; Yang JF; Gorassini MA
    J Neurophysiol; 2014 Jun; 111(12):2544-53. PubMed ID: 24671544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans.
    Mackey AS; Uttaro D; McDonough MP; Krivis LI; Knikou M
    Clin Neurophysiol; 2016 Jan; 127(1):706-715. PubMed ID: 26122072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans.
    Lavoie BA; Devanne H; Capaday C
    J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.