These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 15244277)
1. Measurement of dynamic end-to-end cavity phase shifts in cesium-fountain frequency standards. Jefferts SR; Heavner TP; Donley EA; Parker TE IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jun; 51(6):652-3. PubMed ID: 15244277 [TBL] [Abstract][Full Text] [Related]
2. Switching atomic fountain clock microwave interrogation signal and high-resolution phase measurements. Santarelli G; Governatori G; Chambon D; Lours M; Rosenbusch P; Guéna J; Chapelet F; Bize S; Tobar ME; Laurent P; Potier T; Clairon A IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1319-26. PubMed ID: 19574143 [TBL] [Abstract][Full Text] [Related]
3. Design and realization of the microwave cavity in the PTB caesium atomic fountain clock CSF1. Schröder R; Hübner U; Griebsch D IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):383-92. PubMed ID: 12322889 [TBL] [Abstract][Full Text] [Related]
4. Frequency performances of a miniature optically pumped cesium beam frequency standard. Bousset B; Lucas-Leclin G; Hamouda F; Cerez P; Theobald G IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):366-71. PubMed ID: 18238433 [TBL] [Abstract][Full Text] [Related]
5. Theoretical analysis of fluorescence light shifts in optically pumped cesium beam frequency standards. Hisadome K; Kihara M IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):407-12. PubMed ID: 18267601 [TBL] [Abstract][Full Text] [Related]
6. Frequency shifts in cesium beam clocks induced by microwave leakages. Boussert B; Theobald G; Cerez P; de Clercq E IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):728-38. PubMed ID: 18244224 [TBL] [Abstract][Full Text] [Related]
7. Development and tuning of the microwave resonant cavity of a cryogenic cesium atomic fountain clock. Yang F; Wang X; Fan S; Bai Y; Shi J; Liu D; Zhang H; Guan Y; Hao Q; Ruan J; Zhang S Rev Sci Instrum; 2022 Apr; 93(4):044708. PubMed ID: 35489952 [TBL] [Abstract][Full Text] [Related]
8. Microwave leakage-induced frequency shifts in the primary frequency standards NIST-F1 and IEN-CSF1. Shirley JH; Levi F; Heavner TP; Calonico D; Yu DH; Jefferts SR IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Dec; 53(12):2376-85. PubMed ID: 17186920 [TBL] [Abstract][Full Text] [Related]
9. Cryogenic fountain development at NIST and INRIM: preliminary characterization. Levi F; Calosso C; Calonico D; Lorini L; Bertacco EK; Godone A; Costanzo GA; Mongino B; Jefferts SR; Heavner TP; Donley EA IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):600-5. PubMed ID: 20211776 [TBL] [Abstract][Full Text] [Related]
10. Primary Atomic Frequency Standards at NIST. Sullivan DB; Bergquist JC; Bollinger JJ; Drullinger RE; Itano WM; Jefferts SR; Lee WD; Meekhof D; Parker TE; Walls FL; Wineland DJ J Res Natl Inst Stand Technol; 2001; 106(1):47-63. PubMed ID: 27500017 [TBL] [Abstract][Full Text] [Related]
12. Testing local position invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers. Ashby N; Heavner TP; Jefferts SR; Parker TE; Radnaev AG; Dudin YO Phys Rev Lett; 2007 Feb; 98(7):070802. PubMed ID: 17359010 [TBL] [Abstract][Full Text] [Related]
13. Controlling the microwave amplitude in optically pumped cesium beam frequency standards. Audoin C; Hamouda F; Chassagne L; Barillet R IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):407-13. PubMed ID: 18238438 [TBL] [Abstract][Full Text] [Related]
14. Power dependence of distributed cavity phase-induced frequency biases in atomic fountain frequency standards. Jefferts SR; Shirley JH; Ashby N; Burt EA; Dick GJ IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2314-21. PubMed ID: 16463499 [TBL] [Abstract][Full Text] [Related]
15. Apparent power-dependent frequency shift due to collisions in a cesium fountain. Szymaniec K; Chalupczak W; Weyers S; Wynands R IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1721-2. PubMed ID: 17941377 [TBL] [Abstract][Full Text] [Related]
16. Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Niering M; Holzwarth R; Reichert J; Pokasov P; Udem T; Weitz M; Hansch TW; Lemonde P; Santarelli G; Abgrall M; Laurent P; Salomon C; Clairon A Phys Rev Lett; 2000 Jun; 84(24):5496-9. PubMed ID: 10990978 [TBL] [Abstract][Full Text] [Related]
17. Progress in atomic fountains at LNE-SYRTE. Guéna J; Abgrall M; Rovera D; Laurent P; Chupin B; Lours M; Santarelli G; Rosenbusch P; Tobar M; Li R; Gibble K; Clairon A; Bize S IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):391-410. PubMed ID: 22481772 [TBL] [Abstract][Full Text] [Related]
18. Physical origin of the frequency shifts in cesium beam frequency standards-related environmental sensitivity. Audoin C; Dimarcq N; Giodano V; Viennet J IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):412-21. PubMed ID: 18267651 [TBL] [Abstract][Full Text] [Related]
19. A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping. Burt EA; Diener WA; Tjoelker RL IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Dec; 55(12):2586-95. PubMed ID: 19126484 [TBL] [Abstract][Full Text] [Related]
20. Analysis tools for the accurate evaluation of a small frequency standard. Hamouda F; Theobald G; Cerez P; Audoin C IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):449-56. PubMed ID: 18238564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]