These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
483 related articles for article (PubMed ID: 15244444)
1. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds. Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444 [TBL] [Abstract][Full Text] [Related]
2. In vivo biocompatibilty and degradation behavior of elastic poly(L-lactide-co-epsilon-caprolactone) scaffolds. Jeong SI; Kim BS; Kang SW; Kwon JH; Lee YM; Kim SH; Kim YH Biomaterials; 2004 Dec; 25(28):5939-46. PubMed ID: 15183608 [TBL] [Abstract][Full Text] [Related]
3. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration. Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232 [TBL] [Abstract][Full Text] [Related]
4. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer. Shim WS; Kim JH; Park H; Kim K; Chan Kwon I; Lee DS Biomaterials; 2006 Oct; 27(30):5178-85. PubMed ID: 16797693 [TBL] [Abstract][Full Text] [Related]
5. Elastomeric hydrolyzable porous scaffolds: copolymers of aliphatic polyesters and a polyether-ester. Odelius K; Plikk P; Albertsson AC Biomacromolecules; 2005; 6(5):2718-25. PubMed ID: 16153111 [TBL] [Abstract][Full Text] [Related]
6. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone). Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279 [TBL] [Abstract][Full Text] [Related]
8. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites. Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, structure and properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers. Fernández J; Etxeberria A; Sarasua JR J Mech Behav Biomed Mater; 2012 May; 9():100-12. PubMed ID: 22498288 [TBL] [Abstract][Full Text] [Related]
10. Preparation of macroporous biodegradable poly(L-lactide-co-epsilon-caprolactone) foams and characterization by mercury intrusion porosimetry, image analysis, and impedance spectroscopy. Maquet V; Blacher S; Pirard R; Pirard JP; Vyakarnam MN; Jérôme R J Biomed Mater Res A; 2003 Aug; 66(2):199-213. PubMed ID: 12888989 [TBL] [Abstract][Full Text] [Related]
11. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. Jeong SI; Kim SH; Kim YH; Jung Y; Kwon JH; Kim BS; Lee YM J Biomater Sci Polym Ed; 2004; 15(5):645-60. PubMed ID: 15264665 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of the biodegradable and elastic terpolymer poly(glycolide-co-L-lactide-co-ϵ-caprolactone) for mechano-active tissue engineering. Jung Y; Lee SH; Kim SH; Lim JC; Kim SH J Biomater Sci Polym Ed; 2013; 24(4):386-97. PubMed ID: 23565682 [TBL] [Abstract][Full Text] [Related]
13. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428 [TBL] [Abstract][Full Text] [Related]
14. Characterization of electrospun core/shell poly(vinyl pyrrolidone)/poly(L-lactide-co-epsilon-caprolactone) fibrous membranes and their cytocompatibility in vitro. Li S; Sun B; Li X; Yuan X J Biomater Sci Polym Ed; 2008; 19(2):245-58. PubMed ID: 18237495 [TBL] [Abstract][Full Text] [Related]
15. Surface modified poly(L-lactide-co-epsilon-caprolactone) microspheres as scaffold for tissue engineering. Garkhal K; Verma S; Tikoo K; Kumar N J Biomed Mater Res A; 2007 Sep; 82(3):747-56. PubMed ID: 17326230 [TBL] [Abstract][Full Text] [Related]
16. The effect of hybridization of hydrogels and poly(L-lactide-co-epsilon-caprolactone) scaffolds on cartilage tissue engineering. Jung Y; Kim SH; Kim YH; Kim SH J Biomater Sci Polym Ed; 2010; 21(5):581-92. PubMed ID: 20338093 [TBL] [Abstract][Full Text] [Related]
20. A study of the mechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles. Larrañaga A; Diamanti E; Rubio E; Palomares T; Alonso-Varona A; Aldazabal P; Martin FJ; Sarasua JR Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():451-60. PubMed ID: 25063141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]