BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15244455)

  • 21. Selected morphological and functional properties of extruded acetylated starch-cellulose foams.
    Guan J; Hanna MA
    Bioresour Technol; 2006 Sep; 97(14):1716-26. PubMed ID: 16769212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystalline polymorphism and molecular structure of sodium pravastatin.
    Martín-Islan AP; Cruzado MC; Asensio R; Sainz-Díaz CI
    J Phys Chem B; 2006 Dec; 110(51):26148-59. PubMed ID: 17181270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of photostability of solid-state nicardipine hydrochloride polymorphs by using Fourier-transformed reflection-absorption infrared spectroscopy - effect of grinding on the photostability of crystal form.
    Teraoka R; Otsuka M; Matsuda Y
    Int J Pharm; 2004 Nov; 286(1-2):1-8. PubMed ID: 15500997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ionic-liquid-derived, water-soluble ionic cellulose.
    Vo HT; Kim YJ; Jeon EH; Kim CS; Kim HS; Lee H
    Chemistry; 2012 Jul; 18(29):9019-23. PubMed ID: 22733413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TEMPO-mediated oxidation of cellulose III.
    da Silva Perez D; Montanari S; Vignon MR
    Biomacromolecules; 2003; 4(5):1417-25. PubMed ID: 12959614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantification of compaction-induced crystallinity reduction of a pharmaceutical solid using 19F solid-state NMR and powder X-ray diffraction.
    Liu J; Nagapudi K; Kiang YH; Martinez E; Jona J
    Drug Dev Ind Pharm; 2009 Aug; 35(8):969-75. PubMed ID: 19360510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Difference of the crystal structure of cellulose in wood after hydrothermal and aging degradation: a NIR spectroscopy and XRD study.
    Inagaki T; Siesler HW; Mitsui K; Tsuchikawa S
    Biomacromolecules; 2010 Sep; 11(9):2300-5. PubMed ID: 20831273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gas-phase surface esterification of cellulose microfibrils and whiskers.
    Berlioz S; Molina-Boisseau S; Nishiyama Y; Heux L
    Biomacromolecules; 2009 Aug; 10(8):2144-51. PubMed ID: 19572699
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular directionality in cellulose polymorphs.
    Kim NH; Imai T; Wada M; Sugiyama J
    Biomacromolecules; 2006 Jan; 7(1):274-80. PubMed ID: 16398525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp.
    Wan J; Wang Y; Xiao Q
    Bioresour Technol; 2010 Jun; 101(12):4577-83. PubMed ID: 20181478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya).
    Wang K; Jiang JX; Xu F; Sun RC
    Bioresour Technol; 2009 Nov; 100(21):5288-94. PubMed ID: 19502052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. IR spectroscopy together with multivariate data analysis as a process analytical tool for in-line monitoring of crystallization process and solid-state analysis of crystalline product.
    Pöllänen K; Häkkinen A; Reinikainen SP; Rantanen J; Karjalainen M; Louhi-Kultanen M; Nyström L
    J Pharm Biomed Anal; 2005 Jun; 38(2):275-84. PubMed ID: 15925219
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrospun fullerenol-cellulose biocompatible actuators.
    Li J; Vadahanambi S; Kee CD; Oh IK
    Biomacromolecules; 2011 Jun; 12(6):2048-54. PubMed ID: 21517072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of nanofibers from agricultural residues: wheat straw and soy hulls.
    Alemdar A; Sain M
    Bioresour Technol; 2008 Apr; 99(6):1664-71. PubMed ID: 17566731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Influence of culture mode on bacterial cellulose production and its structure and property].
    Zhou LL; Sun DP; Wu QH; Yang JZ; Yang SL
    Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):914-7. PubMed ID: 18062273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Susceptibility of Iα- and Iβ-Dominated Cellulose to TEMPO-Mediated Oxidation.
    Carlsson DO; Lindh J; Strømme M; Mihranyan A
    Biomacromolecules; 2015 May; 16(5):1643-9. PubMed ID: 25830708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and characterization of camphorsulfonyl acetate of cellulose.
    Xiao D; Hu J; Zhang M; Li M; Wang G; Yao H
    Carbohydr Res; 2004 Aug; 339(11):1925-31. PubMed ID: 15261585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recrystallization of fluconazole using the supercritical antisolvent (SAS) process.
    Park HJ; Kim MS; Lee S; Kim JS; Woo JS; Park JS; Hwang SJ
    Int J Pharm; 2007 Jan; 328(2):152-60. PubMed ID: 16959448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micromeritics and release behaviours of cellulose acetate butyrate microspheres containing theophylline prepared by emulsion solvent evaporation and emulsion non-solvent addition method.
    Jelvehgari M; Atapour F; Nokhodchi A
    Arch Pharm Res; 2009 Jul; 32(7):1019-28. PubMed ID: 19641883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct probing of sorbent-solvent interactions for amylose tris(3,5-dimethylphenylcarbamate) using infrared spectroscopy, X-ray diffraction, solid-state NMR, and DFT modeling.
    Kasat RB; Zvinevich Y; Hillhouse HW; Thomson KT; Wang NH; Franses EI
    J Phys Chem B; 2006 Jul; 110(29):14114-22. PubMed ID: 16854108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.