BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 15244504)

  • 1. Probing the active site of trypsin with rose bengal: insights into the photodynamic inactivation of the enzyme.
    Khajehpour M; Troxler T; Vanderkooi JM
    Photochem Photobiol; 2004; 80(2):359-65. PubMed ID: 15244504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dye localization and self-interactions on the photosensitized generation of singlet oxygen by rose bengal bound to bovine serum albumin.
    Turbay MB; Rey V; Argañaraz NM; Morán Vieyra FE; Aspée A; Lissi EA; Borsarelli CD
    J Photochem Photobiol B; 2014 Dec; 141():275-82. PubMed ID: 25463678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photophysics and photochemistry of rose bengal bound to human serum albumin.
    Alarcón E; Edwards AM; Aspée A; Borsarelli CD; Lissi EA
    Photochem Photobiol Sci; 2009 Jul; 8(7):933-43. PubMed ID: 19582268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rose bengal-sensitized photooxidation of 2-chlorophenol in water using solar simulated light.
    Miller JS
    Water Res; 2005; 39(2-3):412-22. PubMed ID: 15644250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photooxidation of alkaloids: considerable quantum yield enhancement by rose bengal-sensitized singlet molecular oxygen generation.
    Görner H; Miskolczy Z; Megyesi M; Biczók L
    Photochem Photobiol; 2011; 87(6):1315-20. PubMed ID: 21883246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photophysics and photochemistry of dyes bound to human serum albumin are determined by the dye localization.
    Alarcón E; Edwards AM; Aspee A; Moran FE; Borsarelli CD; Lissi EA; Gonzalez-Nilo D; Poblete H; Scaiano JC
    Photochem Photobiol Sci; 2010 Jan; 9(1):93-102. PubMed ID: 20062849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rose Bengal incorporated in mesostructured silica nanoparticles: structural characterization, theoretical modeling and singlet oxygen delivery.
    Martins Estevão B; Cucinotta F; Hioka N; Cossi M; Argeri M; Paul G; Marchese L; Gianotti E
    Phys Chem Chem Phys; 2015 Oct; 17(40):26804-12. PubMed ID: 26396040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvatochromic behavior on the absorption and fluorescence spectra of Rose Bengal dye in various solvents.
    Rauf MA; Graham JP; Bukallah SB; Al-Saedi MA
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Feb; 72(1):133-7. PubMed ID: 18986828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The aqueous photosensitized degradation of butylparaben.
    Gryglik D; Lach M; Miller JS
    Photochem Photobiol Sci; 2009 Apr; 8(4):549-55. PubMed ID: 19337670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal sarcoplasmic reticulum dysfunction induced by reactive oxygen intermediates derived from photoactivated rose bengal.
    Ishibashi T; Lee CI; Okabe E
    J Pharmacol Exp Ther; 1996 Apr; 277(1):350-8. PubMed ID: 8613941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoter-specific synthetic photoendonuclease: rose bengal-labeled T7 RNA polymerase.
    Sutherland BM; Randesi M; Wang K; Conlon K; Epling GA
    Biochemistry; 1993 Feb; 32(7):1788-94. PubMed ID: 8439539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glutathione on rose bengal photosensitized yeast damage.
    Lazarova G
    Microbios; 1993; 75(302):39-43. PubMed ID: 8377662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gemini Surfactant Mediated Catansomes for Enhanced Singlet Oxygen Generation of Rose Bengal and Their Phototoxicity against Cancer Cells.
    Sharma B; Samperi M; Jain A; Chaudhary GR; Kaur G; Pérez-García L
    ACS Biomater Sci Eng; 2022 May; 8(5):1878-1891. PubMed ID: 35412794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser intensity and wavelength dependence of Rose-Bengal-photosensitized inhibition of red blood cell acetylcholinesterase.
    Fluhler EN; Hurley JK; Kochevar IE
    Biochim Biophys Acta; 1989 Mar; 990(3):269-75. PubMed ID: 2923906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singlet oxygen-sensitized delayed fluorescence of common water-soluble photosensitizers.
    Scholz M; Dědic R; Breitenbach T; Hála J
    Photochem Photobiol Sci; 2013 Oct; 12(10):1873-84. PubMed ID: 23949211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylene blue and rose bengal photoinactivation of RNA bacteriophages: comparative studies of 8-oxoguanine formation in isolated RNA.
    Schneider JE; Phillips JR; Pye Q; Maidt ML; Price S; Floyd RA
    Arch Biochem Biophys; 1993 Feb; 301(1):91-7. PubMed ID: 8382909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinactivation of acetylcholinesterase by erythrosin B and related compounds.
    Tomlinson G; Cummings MD; Hryshko L
    Biochem Cell Biol; 1986 Jun; 64(6):515-22. PubMed ID: 3017385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of NADP(+)-dependent isocitrate dehydrogenase by singlet oxygen derived from photoactivated rose bengal.
    Kim SY; Tak JK; Park JW
    Biochimie; 2004 Aug; 86(8):501-7. PubMed ID: 15388226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scavenging of photogenerated oxidative species by antimuscarinic drugs: atropine and derivatives.
    Criado S; Guardianelli C; Tuninetti J; Molina P; García NA
    Redox Rep; 2002; 7(6):385-94. PubMed ID: 12625946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitized photooxidation of thyroidal hormones. Evidence for heavy atom effect on singlet molecular oxygen [O2(1Deltag)]-mediated photoreactions.
    Miskoski S; Soltermann AT; Molina PG; Günther G; Zanocco AL; García NA
    Photochem Photobiol; 2005; 81(2):325-32. PubMed ID: 15643926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.