These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15244570)

  • 1. Coarsening dynamics of ternary amphiphilic fluids and the self-assembly of the gyroid and sponge mesophases: Lattice-Boltzmann simulations.
    González-Segredo N; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061501. PubMed ID: 15244570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress response and structural transitions in sheared gyroidal and lamellar amphiphilic mesophases: Lattice-Boltzmann simulations.
    González-Segredo N; Harting J; Giupponi G; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031503. PubMed ID: 16605528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional hydrodynamic lattice-gas simulations of domain growth and self-assembly in binary immiscible and ternary amphiphilic fluids.
    Love PJ; Coveney PV; Boghosian BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021503. PubMed ID: 11497585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembly of ternary cubic, hexagonal, and lamellar mesophases using the lattice-Boltzmann kinetic method.
    Saksena RS; Coveney PV
    J Phys Chem B; 2008 Mar; 112(10):2950-7. PubMed ID: 18288827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural transitions and arrest of domain growth in sheared binary immiscible fluids and microemulsions.
    Harting J; Giupponi G; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041504. PubMed ID: 17500899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids.
    González-Segredo N; Nekovee M; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046304. PubMed ID: 12786484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design.
    Fong C; Le T; Drummond CJ
    Chem Soc Rev; 2012 Feb; 41(3):1297-322. PubMed ID: 21975366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Petascale lattice-Boltzmann studies of amphiphilic cubic liquid crystalline materials in a globally distributed high-performance computing and visualization environment.
    Saksena RS; Mazzeo MD; Zasada SJ; Coveney PV
    Philos Trans A Math Phys Eng Sci; 2010 Aug; 368(1925):3983-99. PubMed ID: 20643689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice-Boltzmann simulations of self-assembly of a binary water-surfactant system into ordered bicontinuous cubic and lamellar phases.
    Nekovee M; Coveney PV
    J Am Chem Soc; 2001 Dec; 123(49):12380-2. PubMed ID: 11734041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Assembly of Mesophases from Nanoparticles.
    Kumar A; Molinero V
    J Phys Chem Lett; 2017 Oct; 8(20):5053-5058. PubMed ID: 28960988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution self-assembly of block copolymers containing a branched hydrophilic block into inverse bicontinuous cubic mesophases.
    An TH; La Y; Cho A; Jeong MG; Shin TJ; Park C; Kim KT
    ACS Nano; 2015 Mar; 9(3):3084-96. PubMed ID: 25731603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lyotropic liquid crystalline self-assembly material behavior and nanoparticulate dispersions of a phytanyl pro-drug analogue of capecitabine-a chemotherapy agent.
    Gong X; Moghaddam MJ; Sagnella SM; Conn CE; Danon SJ; Waddington LJ; Drummond CJ
    ACS Appl Mater Interfaces; 2011 May; 3(5):1552-61. PubMed ID: 21446773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of gemini surfactants: a computer simulation study.
    Mondal J; Mahanthappa M; Yethiraj A
    J Phys Chem B; 2013 Apr; 117(16):4254-62. PubMed ID: 22967267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entropic interfaces in hard-core model amphiphilic mixtures.
    Brader JM; Schmidt M
    J Colloid Interface Sci; 2005 Jan; 281(2):495-502. PubMed ID: 15571708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why Is Gyroid More Difficult to Nucleate from Disordered Liquids than Lamellar and Hexagonal Mesophases?
    Kumar A; Molinero V
    J Phys Chem B; 2018 May; 122(17):4758-4770. PubMed ID: 29620902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice-boltzmann model for interacting amphiphilic fluids.
    Nekovee M; Coveney PV; Chen H; Boghosian BM
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8282-94. PubMed ID: 11138126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cubic phases of ternary amphiphile-water systems.
    Fraser S; Separovic F; Polyzos A
    Eur Biophys J; 2009 Dec; 39(1):83-90. PubMed ID: 19533116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Sizes of Hexagonal and Gyroid Metal Nanostructures from Liquid Crystal Templating.
    Asghar KA; Rowlands DA; Elliott JM; Squires AM
    ACS Nano; 2015 Nov; 9(11):10970-8. PubMed ID: 26493862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chelating DTPA amphiphiles: ion-tunable self-assembly structures and gadolinium complexes.
    Moghaddam MJ; de Campo L; Kirby N; Drummond CJ
    Phys Chem Chem Phys; 2012 Oct; 14(37):12854-62. PubMed ID: 22890045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern formation and self-assembly driven by competing interactions.
    Pini D; Parola A
    Soft Matter; 2017 Dec; 13(48):9259-9272. PubMed ID: 29199736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.