These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15244570)

  • 21. Lattice-Boltzmann simulation of coalescence-driven island coarsening.
    Başağaoğlu H; Green CT; Meakin P; McCoy BJ
    J Chem Phys; 2004 Oct; 121(16):7987-95. PubMed ID: 15485261
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A computer simulation study of the segregation of amphiphiles in binary immiscible matrices: short asymmetric copolymers in short homopolymers.
    Guo H; Olvera de la Cruz M
    J Chem Phys; 2005 Nov; 123(17):174903. PubMed ID: 16375565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coarse-grained simulation of amphiphilic self-assembly.
    Michel DJ; Cleaver DJ
    J Chem Phys; 2007 Jan; 126(3):034506. PubMed ID: 17249883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coalescence kinetics in surfactant stabilized emulsions: evolution equations from direct numerical simulations.
    Skartlien R; Grimes B; Meakin P; Sjöblom J; Sollum E
    J Chem Phys; 2012 Dec; 137(21):214701. PubMed ID: 23231250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lattice Boltzmann simulations of phase separation in chemically reactive binary fluids.
    Furtado K; Yeomans JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066124. PubMed ID: 16906931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ordered nanostructured amphiphile self-assembly materials from endogenous nonionic unsaturated monoethanolamide lipids in water.
    Sagnella SM; Conn CE; Krodkiewska I; Moghaddam M; Seddon JM; Drummond CJ
    Langmuir; 2010 Mar; 26(5):3084-94. PubMed ID: 19928787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media.
    Maillet JB; Coveney PV
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2898-913. PubMed ID: 11088774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-coded lattice gas model for ternary amphiphilic fluids.
    Sakai T; Chen Y; Ohashi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031503. PubMed ID: 11909062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theory of the lattice Boltzmann method: two-fluid model for binary mixtures.
    Luo LS; Girimaji SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036302. PubMed ID: 12689160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput development of amphiphile self-assembly materials: fast-tracking synthesis, characterization, formulation, application, and understanding.
    Mulet X; Conn CE; Fong C; Kennedy DF; Moghaddam MJ; Drummond CJ
    Acc Chem Res; 2013 Jul; 46(7):1497-505. PubMed ID: 23427836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonequilibrium phase transitions of sheared colloidal microphases: Results from dynamical density functional theory.
    Stopper D; Roth R
    Phys Rev E; 2018 Jun; 97(6-1):062602. PubMed ID: 30011532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembly in block polyelectrolytes.
    Yang S; Vishnyakov A; Neimark AV
    J Chem Phys; 2011 Feb; 134(5):054104. PubMed ID: 21303089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of hydrodynamic interactions on the evolution of chemically reactive ternary mixtures.
    Good K; Kuksenok O; Buxton GA; Ginzburg VV; Balazs AC
    J Chem Phys; 2004 Sep; 121(12):6052-63. PubMed ID: 15367034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent.
    Kaasgaard T; Drummond CJ
    Phys Chem Chem Phys; 2006 Nov; 8(43):4957-75. PubMed ID: 17091149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phase behavior of lipid-based lyotropic liquid crystals in presence of colloidal nanoparticles.
    Venugopal E; Bhat SK; Vallooran JJ; Mezzenga R
    Langmuir; 2011 Aug; 27(16):9792-800. PubMed ID: 21749073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Derivation and thermodynamics of a lattice Boltzmann model with soluble amphiphilic surfactant.
    Furtado K; Skartlien R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066704. PubMed ID: 20866541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design.
    van 't Hag L; Gras SL; Conn CE; Drummond CJ
    Chem Soc Rev; 2017 May; 46(10):2705-2731. PubMed ID: 28280815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Following the nucleation pathway from disordered liquid to gyroid mesophase.
    Marriott M; Lupi L; Kumar A; Molinero V
    J Chem Phys; 2019 Apr; 150(16):164902. PubMed ID: 31042878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals.
    Shrestha LK; Strzelczyk KM; Shrestha RG; Ichikawa K; Aramaki K; Hill JP; Ariga K
    Nanotechnology; 2015 May; 26(20):204002. PubMed ID: 25912881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monte Carlo simulations of amphiphilic nanoparticle self-assembly.
    Davis JR; Panagiotopoulos AZ
    J Chem Phys; 2008 Nov; 129(19):194706. PubMed ID: 19026080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.