These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 15244588)
1. Modified cellular automaton model for the prediction of dendritic growth with melt convection. Zhu MF; Lee SY; Hong CP Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061610. PubMed ID: 15244588 [TBL] [Abstract][Full Text] [Related]
2. Modeling of coupled motion and growth interaction of equiaxed dendritic crystals in a binary alloy during solidification. Qi XB; Chen Y; Kang XH; Li DZ; Gong TZ Sci Rep; 2017 Mar; 7():45770. PubMed ID: 28361933 [TBL] [Abstract][Full Text] [Related]
3. Phase-field modeling of binary alloy solidification with coupled heat and solute diffusion. Ramirez JC; Beckermann C; Karma A; Diepers HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051607. PubMed ID: 15244829 [TBL] [Abstract][Full Text] [Related]
4. Phase-field simulations of velocity selection in rapidly solidified binary alloys. Fan J; Greenwood M; Haataja M; Provatas N Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031602. PubMed ID: 17025638 [TBL] [Abstract][Full Text] [Related]
5. Phase-field simulations of dendritic crystal growth in a forced flow. Tong X; Beckermann C; Karma A; Li Q Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061601. PubMed ID: 11415113 [TBL] [Abstract][Full Text] [Related]
6. Prediction of the operating point of dendrites growing under coupled thermosolutal control at high growth velocity. Mullis AM Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061601. PubMed ID: 21797374 [TBL] [Abstract][Full Text] [Related]
7. Microsegregation Model Including Convection and Tip Undercooling: Application to Directional Solidification and Welding. Billotte T; Daloz D; Rouat B; Tirand G; Kennedy JR; Robin V; Zollinger J Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30036987 [TBL] [Abstract][Full Text] [Related]
8. Thermo-solutal and kinetic modes of stable dendritic growth with different symmetries of crystalline anisotropy in the presence of convection. Alexandrov DV; Galenko PK; Toropova LV Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311212 [TBL] [Abstract][Full Text] [Related]
9. One-domain approach for studying multiphase transport phenomena in biofilm growing systems. Oliveros-Muñoz JM; Calderón-Alvarado MP; Martínez-González GM; Navarrete-Bolaños JL; Jiménez-Islas H Biofouling; 2017 Apr; 33(4):336-351. PubMed ID: 28403635 [TBL] [Abstract][Full Text] [Related]
10. CA Modeling of Microsegregation and Growth of Equiaxed Dendrites in the Binary Al-Mg Alloy. Zyska A Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34207453 [TBL] [Abstract][Full Text] [Related]
11. Competitive dendrite growth during directional solidification of a transparent alloy: Modeling and experiment. Hu M; Sun C; Fang H; Zhu M Eur Phys J E Soft Matter; 2020 Mar; 43(3):16. PubMed ID: 32108280 [TBL] [Abstract][Full Text] [Related]
12. Modeling of free dendritic growth in a gravity environment by lattice Boltzmann method. Wu J; Sun D; Wang J; Zhu M Eur Phys J E Soft Matter; 2020 May; 43(5):30. PubMed ID: 32474760 [TBL] [Abstract][Full Text] [Related]
13. Lattice Boltzmann scheme for crystal growth in external flows. Medvedev D; Kassner K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056703. PubMed ID: 16383781 [TBL] [Abstract][Full Text] [Related]
14. A review on the theory of stable dendritic growth. Alexandrov DV; Galenko PK Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200325. PubMed ID: 34275358 [TBL] [Abstract][Full Text] [Related]
15. Numerical simulation of the effect of hypergravity on the dendritic growth characteristics of aluminum alloys. Zhang Y; Dou R; Wang J; Liu X; Wen Z Heliyon; 2024 Mar; 10(5):e27008. PubMed ID: 38463893 [TBL] [Abstract][Full Text] [Related]
16. Interaction of local solidification and remelting during dendrite coarsening - modeling and comparison with experiments. Zhang Q; Fang H; Xue H; Pan S; Rettenmayr M; Zhu M Sci Rep; 2017 Dec; 7(1):17809. PubMed ID: 29259208 [TBL] [Abstract][Full Text] [Related]
17. Simulation of Temperature Distribution and Microstructure Evolution in the Molten Pool of GTAW Ti-6Al-4V Alloy. Zhang M; Zhou Y; Huang C; Chu Q; Zhang W; Li J Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30445697 [TBL] [Abstract][Full Text] [Related]
18. Dendritic to globular morphology transition in ternary alloy solidification. Danilov D; Nestler B Phys Rev Lett; 2004 Nov; 93(21):215501. PubMed ID: 15601025 [TBL] [Abstract][Full Text] [Related]
19. Double dendrite growth in solidification. Utter B; Bodenschatz E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011601. PubMed ID: 16089973 [TBL] [Abstract][Full Text] [Related]
20. Quantitative phase-field model of alloy solidification. Echebarria B; Folch R; Karma A; Plapp M Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061604. PubMed ID: 15697378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]