These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 15244686)
1. Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions. Chavanis PH Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066126. PubMed ID: 15244686 [TBL] [Abstract][Full Text] [Related]
2. Phase transitions in self-gravitating systems: self-gravitating fermions and hard-sphere models. Chavanis PH Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056123. PubMed ID: 12059663 [TBL] [Abstract][Full Text] [Related]
3. Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions. Chavanis PH; Sire C Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016116. PubMed ID: 14995676 [TBL] [Abstract][Full Text] [Related]
4. Caloric curves of classical self-gravitating systems in general relativity. Alberti G; Chavanis PH Phys Rev E; 2020 May; 101(5-1):052105. PubMed ID: 32575217 [TBL] [Abstract][Full Text] [Related]
5. Statistical mechanics of the self-gravitating gas with two or more kinds of particles. de Vega HJ; Siebert JA Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016112. PubMed ID: 12241431 [TBL] [Abstract][Full Text] [Related]
6. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models. Chavanis PH; Sire C Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066104. PubMed ID: 16906911 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions. Sire C; Chavanis PH Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046133. PubMed ID: 12443285 [TBL] [Abstract][Full Text] [Related]
9. Self-gravitating Brownian systems and bacterial populations with two or more types of particles. Sopik J; Sire C; Chavanis PH Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026105. PubMed ID: 16196642 [TBL] [Abstract][Full Text] [Related]
10. Caloric curve of star clusters. Casetti L; Nardini C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061105. PubMed ID: 23005049 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of the self-gravitating ring model. Tatekawa T; Bouchet F; Dauxois T; Ruffo S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056111. PubMed ID: 16089606 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics of self-gravitating systems. Chavanis PH; Rosier C; Sire C Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036105. PubMed ID: 12366182 [TBL] [Abstract][Full Text] [Related]
13. Stars and steam engines: To what extent do thermodynamics and statistical mechanics apply to self-gravitating systems? Robertson K Synthese; 2019; 196(5):1783-1808. PubMed ID: 31105347 [TBL] [Abstract][Full Text] [Related]
14. Random Transitions of a Binary Star in the Canonical Ensemble. Chavanis PH Entropy (Basel); 2024 Sep; 26(9):. PubMed ID: 39330090 [TBL] [Abstract][Full Text] [Related]
15. Statistical mechanics of relativistic one-dimensional self-gravitating systems. Mann RB; Chak P Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026128. PubMed ID: 11863608 [TBL] [Abstract][Full Text] [Related]
16. Geometry of the energy landscape of the self-gravitating ring. Monechi B; Casetti L Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041136. PubMed ID: 23214558 [TBL] [Abstract][Full Text] [Related]
17. Statistical mechanics of the self-gravitating gas in the Tsallis framework. Escamilla-Herrera LF; Gruber C; Pineda-Reyes V; Quevedo H Phys Rev E; 2019 Feb; 99(2-1):022108. PubMed ID: 30934340 [TBL] [Abstract][Full Text] [Related]
18. Phase transitions in self-gravitating systems and bacterial populations surrounding a central body. Chavanis PH; Sopik J; Sire C Phys Rev E; 2024 Jan; 109(1-1):014118. PubMed ID: 38366534 [TBL] [Abstract][Full Text] [Related]
19. Rotation-induced phase transition in a spherical gravitating system. Klinko P; Miller BN; Prokhorenkov I Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066131. PubMed ID: 11415197 [TBL] [Abstract][Full Text] [Related]
20. Phase diagram of self-attracting systems. Chavanis PH; Ispolatov I Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036109. PubMed ID: 12366186 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]