These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 15244701)

  • 1. Derivation of amplitude equations for nonlinear oscillators subject to arbitrary forcing.
    Mayol C; Toral R; Mirasso CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066141. PubMed ID: 15244701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise.
    Xu Y; Gu R; Zhang H; Xu W; Duan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056215. PubMed ID: 21728638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entrainment of noise-induced and limit cycle oscillators under weak noise.
    Mitarai N; Alon U; Jensen MH
    Chaos; 2013 Jun; 23(2):023125. PubMed ID: 23822490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic bifurcations and coherencelike resonance in a self-sustained bistable noisy oscillator.
    Zakharova A; Vadivasova T; Anishchenko V; Koseska A; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011106. PubMed ID: 20365322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.
    Mall S; Chakraverty S
    Neural Comput; 2016 Aug; 28(8):1574-98. PubMed ID: 27348738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Output-only parameter identification of a colored-noise-driven Van-der-Pol oscillator: Thermoacoustic instabilities as an example.
    Bonciolini G; Boujo E; Noiray N
    Phys Rev E; 2017 Jun; 95(6-1):062217. PubMed ID: 28709231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stationary energy probability density of oscillators driven by a random external force.
    Méndez V; Campos D; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062132. PubMed ID: 23848652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the interpretation of stochastic calculus in systems with cross-correlated Gaussian white noises.
    Méndez V; Denisov SI; Campos D; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012116. PubMed ID: 25122260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization and desynchronization of self-sustained oscillators by common noise.
    Goldobin DS; Pikovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):045201. PubMed ID: 15903714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repulsively coupled Kuramoto-Sakaguchi phase oscillators ensemble subject to common noise.
    Gong CC; Zheng C; Toenjes R; Pikovsky A
    Chaos; 2019 Mar; 29(3):033127. PubMed ID: 30927833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Globally coupled noisy oscillators with inhomogeneous periodic forcing.
    Gabbay M; Larsen ML; Tsimring LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066212. PubMed ID: 15697489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplitude envelope synchronization in coupled chaotic oscillators.
    Gonzalez-Miranda JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036232. PubMed ID: 11909237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harmonic versus subharmonic patterns in a spatially forced oscillating chemical reaction.
    Hammele M; Zimmermann W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066211. PubMed ID: 16906950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators.
    English LQ; Mertens D; Abdoulkary S; Fritz CB; Skowronski K; Kevrekidis PG
    Phys Rev E; 2016 Dec; 94(6-1):062212. PubMed ID: 28085391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation.
    Isaeva OB; Kuznetsov SP; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring a noisy van der Pol type oscillator with a stochastic approach.
    Yuan R; Wang X; Ma Y; Yuan B; Ao P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062109. PubMed ID: 23848629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonstationary regimes in a Duffing oscillator subject to biharmonic forcing near a primary resonance.
    Starosvetsky Y; Manevitch LI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046211. PubMed ID: 21599274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical-stochastic continuous-time identification of a forced Duffing oscillator.
    Junker RG; Relan R; Madsen H
    ISA Trans; 2022 Jul; 126():226-234. PubMed ID: 34392961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using Lyapunov exponents to predict the onset of chaos in nonlinear oscillators.
    Ryabov VB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016214. PubMed ID: 12241468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient probability in basins of noise influenced responses of mono and coupled Duffing oscillators.
    Cilenti L; Balachandran B
    Chaos; 2021 Jun; 31(6):063117. PubMed ID: 34241289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.