These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15244731)

  • 1. Time-dependent gap Hele-Shaw cell with a ferrofluid: evidence for an interfacial singularity inhibition by a magnetic field.
    Miranda JA; Oliveira RM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066312. PubMed ID: 15244731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azimuthal field instability in a confined ferrofluid.
    Dias EO; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023020. PubMed ID: 25768610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fingering patterns in the lifting flow of a confined miscible ferrofluid.
    Chen CY; Wu SY; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036310. PubMed ID: 17500794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape instabilities in confined ferrofluids under crossed magnetic fields.
    Oliveira RM; Coutinho ÍM; Anjos PHA; Miranda JA
    Phys Rev E; 2021 Dec; 104(6-2):065113. PubMed ID: 35030845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of miscible fingering in a time-dependent gap Hele-Shaw cell.
    Chen CY; Chen CH; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056304. PubMed ID: 16089646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning a magnetic field to generate spinning ferrofluid droplets with controllable speed via nonlinear periodic interfacial waves.
    Yu Z; Christov IC
    Phys Rev E; 2021 Jan; 103(1-1):013103. PubMed ID: 33601568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions.
    Lira SA; Miranda JA
    Phys Rev E; 2016 Jan; 93(1):013129. PubMed ID: 26871176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling fingering instabilities in rotating ferrofluids.
    Jackson DP; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):017301. PubMed ID: 12636637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions.
    Oliveira RM; Miranda JA; Leandro ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016304. PubMed ID: 18351931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretching of a confined ferrofluid: influence of viscous stresses and magnetic field.
    Oliveira RM; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036309. PubMed ID: 16605653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetically induced interfacial instabilities in a ferrofluid annulus.
    Livera POS; Anjos PHA; Miranda JA
    Phys Rev E; 2021 Dec; 104(6-2):065103. PubMed ID: 35030922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rotating hele-shaw cells with ferrofluids.
    Miranda JA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2985-8. PubMed ID: 11088789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confined ferrofluid droplet in crossed magnetic fields.
    Jackson DP; Miranda JA
    Eur Phys J E Soft Matter; 2007 Aug; 23(4):389-96. PubMed ID: 17712521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode-coupling approach to non-Newtonian Hele-Shaw flow.
    Constantin M; Widom M; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026313. PubMed ID: 12636806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic weakly nonlinear analysis of interfacial instabilities in Hele-Shaw flows.
    Alvarez-Lacalle E; Casademunt J; Ortín J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016302. PubMed ID: 11461386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures.
    Dias EO; Lira SA; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023003. PubMed ID: 26382499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weakly nonlinear study of normal-field instability in confined ferrofluids.
    Lira SA; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016303. PubMed ID: 21867300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial instabilities in periodically driven Hele-Shaw flows.
    Dias EO; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026303. PubMed ID: 19792245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finger competition dynamics in rotating Hele-Shaw cells.
    Gadêlha H; Miranda JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066308. PubMed ID: 15697503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern formation and interface pinch-off in rotating Hele-Shaw flows: a phase-field approach.
    Folch R; Alvarez-Lacalle E; Ortín J; Casademunt J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056305. PubMed ID: 20365071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.