These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15244733)

  • 1. Swift-Hohenberg model for magnetoconvection.
    Cox SM; Matthews PC; Pollicott SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066314. PubMed ID: 15244733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotating convection in an anisotropic system.
    Roxin A; Riecke H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046219. PubMed ID: 12005988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Description of mesoscale pattern formation in shallow convective cloud fields by using time-dependent Ginzburg-Landau and Swift-Hohenberg stochastic equations.
    Monroy DL; Naumis GG
    Phys Rev E; 2021 Mar; 103(3-1):032312. PubMed ID: 33862782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation.
    Soto-Crespo JM; Akhmediev N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066610. PubMed ID: 12513432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local control of globally competing patterns in coupled Swift-Hohenberg equations.
    Becker M; Frenzel T; Niedermayer T; Reichelt S; Mielke A; Bär M
    Chaos; 2018 Apr; 28(4):043121. PubMed ID: 31906656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instability of convection in a fluid layer rotating about an oblique axis.
    Pollicott SL; Matthews PC; Cox SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016301. PubMed ID: 12636596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring spiral defect chaos in generalized Swift-Hohenberg models with mean flow.
    Karimi A; Huang ZF; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046215. PubMed ID: 22181253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral-defect chaos: Swift-Hohenberg model versus Boussinesq equations.
    Schmitz R; Pesch W; Zimmermann W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):037302. PubMed ID: 11909322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grain-boundary motion in layered phases.
    Boyer D; Viñals J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061704. PubMed ID: 11415120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral defect chaos in an advection-reaction-diffusion system.
    Affan H; Friedrich R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062920. PubMed ID: 25019864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetoconvection transient dynamics by numerical simulation.
    Renaudière de Vaux S; Zamansky R; Bergez W; Tordjeman P; Haquet JF
    Eur Phys J E Soft Matter; 2017 Jan; 40(1):13. PubMed ID: 28124764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized oscillatory states in magnetoconvection.
    Buckley MC; Bushby PJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023019. PubMed ID: 23496622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transitions in overstable rotating magnetoconvection.
    Banerjee A; Ghosh M; Pal P
    Phys Rev E; 2020 Jul; 102(1-1):013107. PubMed ID: 32795050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Onset of patterns in an oscillated granular layer: continuum and molecular dynamics simulations.
    Bougie J; Kreft J; Swift JB; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021301. PubMed ID: 15783318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalization of the reaction-diffusion, Swift-Hohenberg, and Kuramoto-Sivashinsky equations and effects of finite propagation speeds.
    Hutt A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026214. PubMed ID: 17358412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-off convection: Noise-induced intermittency near the convection threshold.
    Fujisaka H; Ouchi K; Ohara H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036201. PubMed ID: 11580416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion of defects in rotating fluids.
    Millan-Rodriguez J; Perez-Garcia C; Bestehorn M; Neufeld M; Friedrich R
    Chaos; 1994 Jun; 4(2):369-376. PubMed ID: 12780111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defect formation in the Swift-Hohenberg equation.
    Galla T; Moro E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):035101. PubMed ID: 12689119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability of rolls in rotating magnetoconvection in a layer with no-slip electrically insulating horizontal boundaries.
    Podvigina O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056322. PubMed ID: 20866337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homoclinic snaking in the discrete Swift-Hohenberg equation.
    Kusdiantara R; Susanto H
    Phys Rev E; 2017 Dec; 96(6-1):062214. PubMed ID: 29347380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.