These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 15244735)

  • 1. Intermittency exponent of the turbulent energy cascade.
    Cleve J; Greiner M; Pearson BR; Sreenivasan KR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066316. PubMed ID: 15244735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local structure of turbulence in flows with large Reynolds numbers.
    Praskovsky AA
    Chaos; 1991 Aug; 1(2):237-241. PubMed ID: 12779920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of external intermittency and mean shear on the spectral inertial-range exponent in a turbulent square jet.
    Zhang J; Xu M; Pollard A; Mi J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053009. PubMed ID: 23767622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power law of decaying homogeneous isotropic turbulence at low Reynolds number.
    Burattini P; Lavoie P; Agrawal A; Djenidi L; Antonia RA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066304. PubMed ID: 16906973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model for intermittency of energy dissipation in turbulent flows.
    Lepreti F; Carbone V; Veltri P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026306. PubMed ID: 17025538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comment on "Intermittency exponent of the turbulent energy cascade".
    Castaing B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):068301; discussion 068302. PubMed ID: 16907034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremal-point density of scaling processes: From fractional Brownian motion to turbulence in one dimension.
    Huang Y; Wang L; Schmitt FG; Zheng X; Jiang N; Liu Y
    Phys Rev E; 2017 Jul; 96(1-1):012215. PubMed ID: 29347222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of initial conditions on the mean energy dissipation rate and the scaling exponent.
    Antonia RA; Pearson BR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):8086-90. PubMed ID: 11138093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Similarity of intermittency characteristics of temperature and transverse velocity.
    Xu G; Zhou T; Rajagopalan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046302. PubMed ID: 17995101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-size scaling of two-point statistics and the turbulent energy cascade generators.
    Cleve J; Dziekan T; Schmiegel J; Barndorff-Nielsen OE; Pearson BR; Sreenivasan KR; Greiner M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026309. PubMed ID: 15783421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extreme dissipation and intermittency in turbulence at very high Reynolds numbers.
    Elsinga GE; Ishihara T; Hunt JCR
    Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200591. PubMed ID: 33362423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar.
    Banakh VA; Smalikho IN; Falits AV
    Opt Express; 2017 Sep; 25(19):22679-22692. PubMed ID: 29041575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive scalar intermittency in low temperature helium flows.
    Moisy F; Willaime H; Andersen JS; Tabeling P
    Phys Rev Lett; 2001 May; 86(21):4827-30. PubMed ID: 11384358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalings and structures in turbulent Couette-Taylor flow.
    She ZS; Ren K; Lewis GS; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016308. PubMed ID: 11461392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition at dissipative scales in large-Reynolds-number turbulence.
    Tabeling P; Willaime H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066301. PubMed ID: 12188822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite dissipation and intermittency in magnetohydrodynamics.
    Mininni PD; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):025401. PubMed ID: 19792189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transfer and dissipation in forced isotropic turbulence.
    McComb WD; Berera A; Yoffe SR; Linkmann MF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043013. PubMed ID: 25974586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: the slow emergence of scaling laws.
    Mininni PD; Alexakis A; Pouquet A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036306. PubMed ID: 18517510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow decay of the finite Reynolds number effect of turbulence.
    Qian J
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):3409-12. PubMed ID: 11970160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermittency in the isotropic component of helical and nonhelical turbulent flows.
    Martin LN; Mininni PD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016310. PubMed ID: 20365463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.