These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15244749)

  • 1. Dusty plasmas in a constant electric field: role of the electron drag force.
    Khrapak SA; Morfill GE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066411. PubMed ID: 15244749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Friction-force model for Maxwellian drifting ions in weakly ionized plasmas.
    Conde L; Ibáñez LF; Lambás J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026407. PubMed ID: 18850946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully self-consistent ion-drag-force calculations for dust in collisional plasmas with an external electric field.
    Patacchini L; Hutchinson IH
    Phys Rev Lett; 2008 Jul; 101(2):025001. PubMed ID: 18764185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of collision-dominated dust voids in plasmas.
    Tsytovich VN; Vladimirov SV; Morfill GE; Goree J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056609. PubMed ID: 11415033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force field inside the void in complex plasmas under microgravity conditions.
    Kretschmer M; Khrapak SA; Zhdanov SK; Thomas HM; Morfill GE; Fortov VE; Lipaev AM; Molotkov VI; Ivanov AI; Turin MV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056401. PubMed ID: 16089654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superfluidlike motion of an absorbing body in a collisional plasma.
    Vladimirov SV; Khrapak SA; Chaudhuri M; Morfill GE
    Phys Rev Lett; 2008 Feb; 100(5):055002. PubMed ID: 18352380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of self-excited dust vortices in complex plasmas under microgravity.
    Akdim MR; Goedheer WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056405. PubMed ID: 12786285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the effect of dust on the plasma parameters in a dusty argon discharge under microgravity.
    Akdim MR; Goedheer WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066407. PubMed ID: 16241359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of the force field in plasma wakes.
    Lapenta G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026409. PubMed ID: 12241299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion drag force in plasmas at high electronegativity.
    Denysenko I; Yu MY; Stenflo L; Xu S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016405. PubMed ID: 16090097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic theory for ion structure and stopping power in quantum plasmas.
    Shukla PK; Akbari-Moghanjoughi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043106. PubMed ID: 23679529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The creation of electric wind due to the electrohydrodynamic force.
    Park S; Cvelbar U; Choe W; Moon SY
    Nat Commun; 2018 Jan; 9(1):371. PubMed ID: 29371666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion drag force in complex plasmas.
    Khrapak SA; Ivlev AV; Morfill GE; Thomas HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046414. PubMed ID: 12443337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dust-acoustic wave instabilities in collisional plasmas.
    Ostrikov KN; Vladimirov SV; Yu MY; Morfill GE
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4315-21. PubMed ID: 11088228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh.
    Mikellides IG; Katz I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046703. PubMed ID: 23214706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of dust voids in plasmas.
    Goree J; Morfill GE; Tsytovich VN; Vladimirov SV
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jun; 59(6):7055-67. PubMed ID: 11969694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory for large-amplitude electrostatic ion shocks in quantum plasmas.
    Akbari-Moghanjoughi M; Shukla PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066401. PubMed ID: 23368053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of voids in colloidal plasmas.
    Akdim MR; Goedheer WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):015401. PubMed ID: 11800728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric potential around an absorbing body in plasmas: effect of ion-neutral collisions.
    Khrapak SA; Klumov BA; Morfill GE
    Phys Rev Lett; 2008 Jun; 100(22):225003. PubMed ID: 18643425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiometric force in dusty plasmas.
    Ignatov AM; Amiranashvili SG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):017402. PubMed ID: 11304396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.