BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 15244814)

  • 1. Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores.
    Lai SK; Kau CY; Tang YW; Chan KY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051203. PubMed ID: 15244814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ionic size on the structure of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Phys Chem B; 2011 Sep; 115(37):10903-10. PubMed ID: 21827170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic exclusion phase transition in neutral and weakly charged cylindrical nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    J Chem Phys; 2011 Feb; 134(7):074706. PubMed ID: 21341868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical properties of the double layer of an ionic liquid using a dimer model electrolyte and density functional theory.
    Henderson D; Wu J
    J Phys Chem B; 2012 Mar; 116(8):2520-5. PubMed ID: 22280446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrolyte exclusion from charged adsorbent: replica Ornstein-Zernike theory and simulations.
    Luksic M; Hribar-Lee B; Vlachy V
    J Phys Chem B; 2007 May; 111(21):5966-75. PubMed ID: 17488109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three component model of cylindrical electric double layers containing mixed electrolytes: A systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2010 May; 132(19):194706. PubMed ID: 20499983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion transport and molecular organization are coupled in polyelectrolyte-modified nanopores.
    Tagliazucchi M; Rabin Y; Szleifer I
    J Am Chem Soc; 2011 Nov; 133(44):17753-63. PubMed ID: 21942450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions.
    Valiskó M; Boda D
    J Chem Phys; 2014 Jun; 140(23):234508. PubMed ID: 24952553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the Dielectric Constant on the Ionic Current Rectification of Bipolar Nanopores.
    Córdoba A; Montes de Oca JM; Darling SB; de Pablo JJ
    ACS Nano; 2024 May; 18(19):12569-12579. PubMed ID: 38696274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Chem Phys; 2014 Nov; 141(18):184702. PubMed ID: 25399154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of colloidal solution in presence of mixed electrolytes: a solvent restricted primitive model study.
    Modak B; Patra CN; Ghosh SK; Das P
    J Phys Chem B; 2011 Oct; 115(42):12126-34. PubMed ID: 21919495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular simulation of transport in nanopores: application of the transient-time correlation function formalism.
    Desgranges C; Delhommelle J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):027701. PubMed ID: 18352161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Apr; 134(16):164902. PubMed ID: 21528979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brownian dynamics simulation of a model simple electrolyte in solvents of low dielectric constant.
    Yamaguchi T; Akatsuka T; Koda S
    J Chem Phys; 2011 Jun; 134(24):244506. PubMed ID: 21721642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of ion properties on the equilibrium and transport properties of electrolyte solutions.
    Van Damme S; Dufrêche JF; Deconinck J
    J Phys Chem B; 2006 Jan; 110(2):1015-9. PubMed ID: 16471636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polar-solvation classical density-functional theory for electrolyte aqueous solutions near a wall.
    Warshavsky V; Marucho M
    Phys Rev E; 2016 Apr; 93():042607. PubMed ID: 27176352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.