These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15244814)

  • 21. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relation between the diffusivity, viscosity, and ionic radius of LiCl in water, methanol, and ethylene glycol: a molecular dynamics simulation.
    Kumar P; Varanasi SR; Yashonath S
    J Phys Chem B; 2013 Jul; 117(27):8196-208. PubMed ID: 23800019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of Molecular and Primitive Solvent Models for Electrical Double Layers in Nanochannels.
    Lee JW; Templeton JA; Mandadapu KK; Zimmerman JA
    J Chem Theory Comput; 2013 Jul; 9(7):3051-61. PubMed ID: 26583986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electric conductivity in electrolyte solution under external electromagnetic field by nonequilibrium molecular dynamics simulation.
    Yang L; Huang K
    J Phys Chem B; 2010 Jul; 114(25):8449-52. PubMed ID: 20536198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo simulations of salt solutions: exploring the validity of primitive models.
    Abbas Z; Ahlberg E; Nordholm S
    J Phys Chem B; 2009 Apr; 113(17):5905-16. PubMed ID: 19341250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionic structure in liquids confined by dielectric interfaces.
    Jing Y; Jadhao V; Zwanikken JW; Olvera de la Cruz M
    J Chem Phys; 2015 Nov; 143(19):194508. PubMed ID: 26590543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The transition from a molecular to a continuum solvent in electrical double layers showing ion-ion correlation effects.
    Pegado L; Jönsson B; Wennerström H
    Phys Chem Chem Phys; 2011 Sep; 13(36):16324-35. PubMed ID: 21845284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A unifying mode-coupling theory for transport properties of electrolyte solutions. II. Results for equal-sized ions electrolytes.
    Aburto CC; Nägele G
    J Chem Phys; 2013 Oct; 139(13):134110. PubMed ID: 24116555
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size and charge correlations in spherical electric double layers: a case study with fully asymmetric mixed electrolytes within the solvent primitive model.
    Patra CN
    RSC Adv; 2020 Oct; 10(64):39017-39025. PubMed ID: 35518397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Confined Electrolytes Show Bulk Dynamics Modulated by Hydrodynamic Couplings with the Walls.
    Perez Ocampo L; Jardat M; Dahirel V
    J Phys Chem B; 2023 May; 127(19):4309-4317. PubMed ID: 37141568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of non-equilibrium association-dissociation processes in the dynamic electrophoretic mobility and dielectric response of realistic salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E; Lechuga L; Arroyo FJ; Delgado Á
    Adv Colloid Interface Sci; 2013 Dec; 201-202():57-67. PubMed ID: 24161224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ionic capillary evaporation in weakly charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev Lett; 2010 Oct; 105(15):158103. PubMed ID: 21230942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-diffusion coefficients of ions in the presence of charged obstacles.
    Jardat M; Hribar-Lee B; Vlachy V
    Phys Chem Chem Phys; 2008 Jan; 10(3):449-57. PubMed ID: 18174987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding the ion jelly conductivity mechanism.
    Carvalho T; Augusto V; Brás AR; Lourenço NM; Afonso CA; Barreiros S; Correia NT; Vidinha P; Cabrita EJ; Dias CJ; Dionísio M; Roling B
    J Phys Chem B; 2012 Mar; 116(9):2664-76. PubMed ID: 22369088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Connecting the molecular scale to the continuum scale for diffusion processes in smectite-rich porous media.
    Bourg IC; Sposito G
    Environ Sci Technol; 2010 Mar; 44(6):2085-91. PubMed ID: 20146523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Liquid-liquid phase separation in solutions of ionic liquids: phase diagrams, corresponding state analysis and comparison with simulations of the primitive model.
    Schröer W; Vale VR
    J Phys Condens Matter; 2009 Oct; 21(42):424119. PubMed ID: 21715854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aqueous electrolytes confined within functionalized silica nanopores.
    Videla PE; Sala J; Martí J; Guàrdia E; Laria D
    J Chem Phys; 2011 Sep; 135(10):104503. PubMed ID: 21932906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electric-field-controlled water and ion permeation of a hydrophobic nanopore.
    Dzubiella J; Hansen JP
    J Chem Phys; 2005 Jun; 122(23):234706. PubMed ID: 16008472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of density functional theory to study the double layer of an electrolyte with an explicit dimer model for the solvent.
    Henderson D; Jiang DE; Jin Z; Wu J
    J Phys Chem B; 2012 Sep; 116(36):11356-61. PubMed ID: 22889259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.
    Yu YX; Wu J; Gao GH
    J Chem Phys; 2004 Apr; 120(15):7223-33. PubMed ID: 15267630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.