BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15244860)

  • 1. Theoretical and computational methods for the noninvasive detection of gastric electrical source coupling.
    Irimia A; Bradshaw LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 1):051920. PubMed ID: 15244860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependent component analysis for the magnetogastrographic detection of human electrical response activity.
    Estombelo-Montesco CA; de Araujo DB; Silva Filho AC; Moraes ER; Barros AK; Wakai RT; Baffa O
    Physiol Meas; 2007 Sep; 28(9):1029-44. PubMed ID: 17827651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and computational multiple regression study of gastric electrical activity using dipole tracing from magnetic field measurements.
    Irimia A; Beauchamp JJ; Bradshaw LA
    J Biol Phys; 2004 Sep; 30(3):239-59. PubMed ID: 23345871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical ellipsoidal model of gastric electrical control activity propagation.
    Irimia A; Bradshaw LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 1):051905. PubMed ID: 14682818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach.
    Allescher HD; Abraham-Fuchs K; Dunkel RE; Classen M
    Dig Dis Sci; 1998 Apr; 43(4):683-93. PubMed ID: 9558020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface current density mapping for identification of gastric slow wave propagation.
    Bradshaw LA; Cheng LK; Richards WO; Pullan AJ
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2131-9. PubMed ID: 19403355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of gastric electrical activity using magnetic field measurements: a simulation study.
    Kim JH; Bradshaw LA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2010 Jan; 38(1):177-86. PubMed ID: 19774463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling gastrointestinal bioelectric activity.
    Pullan A; Cheng L; Yassi R; Buist M
    Prog Biophys Mol Biol; 2004; 85(2-3):523-50. PubMed ID: 15142760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomagnetic signatures of uncoupled gastric musculature.
    Bradshaw LA; Irimia A; Sims JA; Richards WO
    Neurogastroenterol Motil; 2009 Jul; 21(7):778-e50. PubMed ID: 19222760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetoenterography (MENG): noninvasive measurement of bioelectric activity in human small intestine.
    Richards WO; Bradshaw LA; Staton DJ; Garrard CL; Liu F; Buchanan S; Wikswo JP
    Dig Dis Sci; 1996 Dec; 41(12):2293-301. PubMed ID: 9011432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ellipsoidal electrogastrographic forward modelling.
    Irimia A; Bradshaw LA
    Phys Med Biol; 2005 Sep; 50(18):4429-44. PubMed ID: 16148402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of gastric electrical activity in health and disease.
    Familoni BO; Abell TL; Bowes KL
    IEEE Trans Biomed Eng; 1995 Jul; 42(7):647-57. PubMed ID: 7622148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conoidal dipole model of electrical field produced by the human stomach.
    Mintchev MP; Bowes KL
    Med Biol Eng Comput; 1995 Mar; 33(2):179-84. PubMed ID: 7643657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetogastrographic detection of gastric electrical response activity in humans.
    Irimia A; Richards WO; Bradshaw LA
    Phys Med Biol; 2006 Mar; 51(5):1347-60. PubMed ID: 16481699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity.
    Komuro R; Cheng LK; Pullan AJ
    Ann Biomed Eng; 2008 Jun; 36(6):1049-59. PubMed ID: 18330701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrative software package for gastrointestinal biomagnetic data acquisition and analysis using SQUID magnetometers.
    Irimia A; Cheng LK; Buist ML; Pullan AJ; Bradshaw LA
    Comput Methods Programs Biomed; 2006 Aug; 83(2):83-94. PubMed ID: 16857291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spatio-temporal dipole simulation of gastrointestinal magnetic fields.
    Bradshaw LA; Myers A; Wikswo JP; Richards WO
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):836-47. PubMed ID: 12848351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling?
    Buist ML; Cheng LK; Sanders KM; Pullan AJ
    Exp Physiol; 2006 Mar; 91(2):383-90. PubMed ID: 16407476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive detection of small bowel electrical activity from SQUID magnetometer measurements using SOBI.
    Erickson J; Obioha C; Goodale A; Bradshaw A; Richards W
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1871-4. PubMed ID: 19163053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.