These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15244873)

  • 1. Prediction of simultaneously large and opposite generalized Goos-Hänchen shifts for TE and TM light beams in an asymmetric double-prism configuration.
    Li CF; Wang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):055601. PubMed ID: 15244873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration.
    Broe J; Keller O
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1212-22. PubMed ID: 12049360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collinear heterodyne interferometer technique for measuring Goos-Hänchen shift.
    Zhang W; Zhang Z
    Appl Opt; 2018 Nov; 57(31):9346-9350. PubMed ID: 30461974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opposite Goos-Hänchen shifts for transverse-electric and transverse-magnetic beams at the interface associated with single-negative materials.
    Hu X; Huang Y; Zhang W; Qing DK; Peng J
    Opt Lett; 2005 Apr; 30(8):899-901. PubMed ID: 15865392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frustrated total reflection: the double-prism revisited.
    Haibel A; Nimtz G; Stahlhofen AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047601. PubMed ID: 11308988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift in a frustrated total internal reflection configuration.
    Chen Y; Ban Y; Zhu QB; Chen X
    Opt Lett; 2016 Oct; 41(19):4468-4471. PubMed ID: 27749857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goos-Hänchen shifts of partially coherent light fields.
    Wang LG; Zhu SY; Zubairy MS
    Phys Rev Lett; 2013 Nov; 111(22):223901. PubMed ID: 24329448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the Goos-Hänchen shift in a double prism structure using three-level Raman gain medium.
    Asiri S; Wang LG
    Sci Rep; 2023 Dec; 13(1):22780. PubMed ID: 38123654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental observation of a giant Goos-Hänchen shift in graphene using a beam splitter scanning method.
    Li X; Wang P; Xing F; Chen XD; Liu ZB; Tian JG
    Opt Lett; 2014 Oct; 39(19):5574-7. PubMed ID: 25360931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct experimental observation of giant Goos-Hänchen shifts from bandgap-enhanced total internal reflection.
    Wan Y; Zheng Z; Kong W; Liu Y; Lu Z; Bian Y
    Opt Lett; 2011 Sep; 36(18):3539-41. PubMed ID: 21931383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin canting induced nonreciprocal Goos-Hänchen shifts.
    Macêdo R; Stamps RL; Dumelow T
    Opt Express; 2014 Nov; 22(23):28467-78. PubMed ID: 25402089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of the composite Goos-Hänchen shift of an optical beam.
    Santana OJS; de Araujo LEE
    Opt Lett; 2018 Aug; 43(16):4037-4040. PubMed ID: 30106946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media.
    Lai HM; Chan SW
    Opt Lett; 2002 May; 27(9):680-2. PubMed ID: 18007897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Goos-Hänchen and Imbert-Fedorov shifts of higher-order Laguerre-Gaussian beams reflected from a dielectric slab.
    Pichugin KN; Maksimov DN; Sadreev AF
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1324-1329. PubMed ID: 30110294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Goos-Hänchen shift due to a Rydberg state.
    Asadpour SH; Hamedi HR; Jafari M
    Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eigenpolarizations for giant transverse optical beam shifts.
    Götte JB; Löffler W; Dennis MR
    Phys Rev Lett; 2014 Jun; 112(23):233901. PubMed ID: 24972208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of the displacement of a three-dimensional Gaussian beam transmitted at total internal reflection. Near-field applications.
    Baida FI; Van Labeke D; Vigoureux JM
    Appl Opt; 1978 Mar; 17(5):858-66. PubMed ID: 20197882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab.
    Wang LG; Chen H; Zhu SY
    Opt Lett; 2005 Nov; 30(21):2936-8. PubMed ID: 16279474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active manipulation for Goos-Hänchen shift of guided-wave via a metasurface of silicon-nanoscale semi-spheres on SOI waveguide.
    Zhang Y; Sun D; Yu M; Xu Y; Chen Z
    Opt Express; 2024 May; 32(11):19999-20010. PubMed ID: 38859119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amplified total internal reflection.
    Fan J; Dogariu A; Wang LJ
    Opt Express; 2003 Feb; 11(4):299-308. PubMed ID: 19461736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.