These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 15244903)
1. Topological aspects of the structure of chaotic attractors in R3. Tsankov TD; Gilmore R Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056206. PubMed ID: 15244903 [TBL] [Abstract][Full Text] [Related]
2. Strange attractors are classified by bounding Tori. Tsankov TD; Gilmore R Phys Rev Lett; 2003 Sep; 91(13):134104. PubMed ID: 14525309 [TBL] [Abstract][Full Text] [Related]
3. Embeddings of a strange attractor into R3. Tsankov TD; Nishtala A; Gilmore R Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056215. PubMed ID: 15244912 [TBL] [Abstract][Full Text] [Related]
4. Distinguishing between folding and tearing mechanisms in strange attractors. Byrne G; Gilmore R; Letellier C Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056214. PubMed ID: 15600735 [TBL] [Abstract][Full Text] [Related]
6. Experimental distinction between chaotic and strange nonchaotic attractors on the basis of consistency. Uenohara S; Mitsui T; Hirata Y; Morie T; Horio Y; Aihara K Chaos; 2013 Jun; 23(2):023110. PubMed ID: 23822475 [TBL] [Abstract][Full Text] [Related]
7. Characterization of noise-induced strange nonchaotic attractors. Wang X; Lai YC; Lai CH Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016203. PubMed ID: 16907173 [TBL] [Abstract][Full Text] [Related]
8. Embeddings of low-dimensional strange attractors: topological invariants and degrees of freedom. Romanazzi N; Lefranc M; Gilmore R Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066214. PubMed ID: 17677347 [TBL] [Abstract][Full Text] [Related]
9. Topological characterization of toroidal chaos: A branched manifold for the Deng toroidal attractor. Mangiarotti S; Letellier C Chaos; 2021 Jan; 31(1):013129. PubMed ID: 33754770 [TBL] [Abstract][Full Text] [Related]
10. A new route to chaos: sequences of topological torus bifurcations. Spears BK; Szeri AJ Chaos; 2005 Sep; 15(3):33108. PubMed ID: 16252982 [TBL] [Abstract][Full Text] [Related]
11. Fractalization route to strange nonchaotic dynamics. Datta S; Ramaswamy R; Prasad A Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046203. PubMed ID: 15600491 [TBL] [Abstract][Full Text] [Related]
12. On the origin of chaotic attractors with two zero Lyapunov exponents in a system of five biharmonically coupled phase oscillators. Grines EA; Kazakov A; Sataev IR Chaos; 2022 Sep; 32(9):093105. PubMed ID: 36182377 [TBL] [Abstract][Full Text] [Related]
13. Homoclinic tangency and chaotic attractor disappearance in a dripping faucet experiment. Pinto RD; Sartorelli JC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):342-7. PubMed ID: 11046271 [TBL] [Abstract][Full Text] [Related]
15. New periodic-chaotic attractors in slow-fast Duffing system with periodic parametric excitation. Li X; Shen Y; Sun JQ; Yang S Sci Rep; 2019 Aug; 9(1):11185. PubMed ID: 31371736 [TBL] [Abstract][Full Text] [Related]
16. Entropy and bifurcations in a chaotic laser. Collins P; Krauskopf B Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056201. PubMed ID: 12513580 [TBL] [Abstract][Full Text] [Related]
17. Effects of quasiperiodic forcing in epidemic models. Bilal S; Singh BK; Prasad A; Michael E Chaos; 2016 Sep; 26(9):093115. PubMed ID: 27781468 [TBL] [Abstract][Full Text] [Related]
18. Predicting the bounds of large chaotic systems using low-dimensional manifolds. Haugaard AM PLoS One; 2017; 12(6):e0179507. PubMed ID: 28644871 [TBL] [Abstract][Full Text] [Related]
19. Generalized entropies of chaotic maps and flows: A unified approach. Badii R Chaos; 1997 Dec; 7(4):694-700. PubMed ID: 12779695 [TBL] [Abstract][Full Text] [Related]