These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15245040)

  • 21. Room temperature Frenkel-Wannier-Mott hybridization of degenerate excitons in a strongly coupled microcavity.
    Slootsky M; Liu X; Menon VM; Forrest SR
    Phys Rev Lett; 2014 Feb; 112(7):076401. PubMed ID: 24579619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Giant Rabi Splitting of Whispering Gallery Polaritons in GaN/InGaN Core-Shell Wire.
    Gong SH; Ko SM; Jang MH; Cho YH
    Nano Lett; 2015 Jul; 15(7):4517-24. PubMed ID: 26061117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity.
    Pradeesh K; Baumberg JJ; Prakash GV
    Opt Express; 2009 Nov; 17(24):22171-8. PubMed ID: 19997463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong plasmon-exciton coupling in MIM waveguide-resonator systems with WS
    Li H; Chen B; Qin M; Wang L
    Opt Express; 2020 Jan; 28(1):205-215. PubMed ID: 32118951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires.
    Shang Q; Zhang S; Liu Z; Chen J; Yang P; Li C; Li W; Zhang Y; Xiong Q; Liu X; Zhang Q
    Nano Lett; 2018 Jun; 18(6):3335-3343. PubMed ID: 29722986
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bose-Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity.
    Berman OL; Kezerashvili RY; Lozovik YE; Snoke DW
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5459-82. PubMed ID: 21041225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity.
    Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S
    Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crossover from exciton to biexciton polaritons in semiconductor microcavities.
    Saba M; Quochi F; Ciuti C; Oesterle U; Staehli JL; Deveaud B; Bongiovanni G; Mura A
    Phys Rev Lett; 2000 Jul; 85(2):385-8. PubMed ID: 10991289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules.
    Hakala TK; Toppari JJ; Kuzyk A; Pettersson M; Tikkanen H; Kunttu H; Törmä P
    Phys Rev Lett; 2009 Jul; 103(5):053602. PubMed ID: 19792498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling of Rabi splitting in quantum well microcavities using time-dependent transfer matrix method.
    Li XF; Yu SF
    Opt Express; 2008 Nov; 16(23):19285-90. PubMed ID: 19582021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strong Coupling between Self-Assembled Molecules and Surface Plasmon Polaritons.
    Bigeon J; Le Liepvre S; Vassant S; Belabas N; Bardou N; Minot C; Yacomotti A; Levenson A; Charra F; Barbay S
    J Phys Chem Lett; 2017 Nov; 8(22):5626-5632. PubMed ID: 29094949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity.
    Peter E; Senellart P; Martrou D; Lemaître A; Hours J; Gérard JM; Bloch J
    Phys Rev Lett; 2005 Aug; 95(6):067401. PubMed ID: 16090987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments.
    Lermer M; Gregersen N; Dunzer F; Reitzenstein S; Höfling S; Mørk J; Worschech L; Kamp M; Forchel A
    Phys Rev Lett; 2012 Feb; 108(5):057402. PubMed ID: 22400961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities.
    Laucht A; Hauke N; Villas-Bôas JM; Hofbauer F; Böhm G; Kaniber M; Finley JJ
    Phys Rev Lett; 2009 Aug; 103(8):087405. PubMed ID: 19792763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large and well-defined Rabi splitting in a semiconductor nanogap cavity.
    Uemoto M; Ajiki H
    Opt Express; 2014 Sep; 22(19):22470-8. PubMed ID: 25321717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Gold Nano-Bipyramid Dimensions on Strong Coupling with Excitons of Monolayer MoS
    Lawless J; Hrelescu C; Elliott C; Peters L; McEvoy N; Bradley AL
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46406-46415. PubMed ID: 32960560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strong exciton-photon coupling in an organic single crystal microcavity.
    Kéna-Cohen S; Davanço M; Forrest SR
    Phys Rev Lett; 2008 Sep; 101(11):116401. PubMed ID: 18851303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled Strong Coupling and Absence of Dark Polaritons in Microcavities with Double Quantum Wells.
    Sivalertporn K; Muljarov EA
    Phys Rev Lett; 2015 Aug; 115(7):077401. PubMed ID: 26317745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of incoherent pumping in a strongly coupled system of exchange-split excitons and pillar-microcavities.
    Lee YS; Lin SD
    Opt Lett; 2014 Dec; 39(23):6640-3. PubMed ID: 25490641
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry.
    Chestnov IY; Demirchyan SS; Alodjants AP; Rubo YG; Kavokin AV
    Sci Rep; 2016 Jan; 6():19551. PubMed ID: 26790534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.