These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 15245170)

  • 1. Solid-solid phase transformation via virtual melting significantly below the melting temperature.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    Phys Rev Lett; 2004 Jun; 92(23):235702. PubMed ID: 15245170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.
    Levitas VI; Henson BF; Smilowitz LB; Asay BW
    J Phys Chem B; 2006 May; 110(20):10105-19. PubMed ID: 16706472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of the γ-δ phase transition in energetic nitramine-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine.
    Bowlan P; Henson BF; Smilowitz L; Levitas VI; Suvorova N; Oschwald D
    J Chem Phys; 2019 Feb; 150(6):064705. PubMed ID: 30769966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.
    Momeni K; Levitas VI
    Phys Chem Chem Phys; 2016 Apr; 18(17):12183-203. PubMed ID: 27078783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The strong influence of internal stresses on the nucleation of a nanosized, deeply undercooled melt at a solid-solid phase interface.
    Momeni K; Levitas VI; Warren JA
    Nano Lett; 2015 Apr; 15(4):2298-303. PubMed ID: 25789667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled phase field, heat conduction, and elastodynamic simulations of kinetic superheating and nanoscale melting of aluminum nanolayer irradiated by picosecond laser.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2015 Dec; 17(47):31758-68. PubMed ID: 26561920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual melting as a new mechanism of stress relaxation under high strain rate loading.
    Levitas VI; Ravelo R
    Proc Natl Acad Sci U S A; 2012 Aug; 109(33):13204-7. PubMed ID: 22847409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate).
    Gan Z; Kuwabara K; Abe H; Iwata T; Doi Y
    Biomacromolecules; 2004; 5(2):371-8. PubMed ID: 15002996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface induced melting of long Al nanowires: phase field model and simulations for pressure loading and without it.
    Javanbakht M; Eskandari SS; Silani M
    Nanotechnology; 2022 Jul; 33(42):. PubMed ID: 35839666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics studies of melting and solid-state transitions of ammonium nitrate.
    Velardez GF; Alavi S; Thompson DL
    J Chem Phys; 2004 May; 120(19):9151-9. PubMed ID: 15267851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2016 Oct; 18(41):28835-28853. PubMed ID: 27722318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of prefreezing at the interface melt-solid in polymer crystallization.
    Löhmann AK; Henze T; Thurn-Albrecht T
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17368-72. PubMed ID: 25422447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grain boundary-induced premelting and solid ↔ melt phase transformations: effect of interfacial widths and energies and triple junctions at the nanoscale.
    Basak A
    Phys Chem Chem Phys; 2021 Sep; 23(33):17953-17972. PubMed ID: 34382047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size and mechanics effects in surface-induced melting of nanoparticles.
    Levitas VI; Samani K
    Nat Commun; 2011; 2():284. PubMed ID: 21505440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melting and superheating in solids with volume shrinkage at melting: a molecular dynamics study of silicon.
    Zhang Q; Li Q; Li M
    J Chem Phys; 2013 Jan; 138(4):044504. PubMed ID: 23387602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nonlinear interfacial kinetics and interfacial thermal resistance in planar solidification.
    Palmieri B; Ward CA; Dejmek M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051605. PubMed ID: 23214791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting.
    Inasawa S; Sugiyama M; Yamaguchi Y
    J Phys Chem B; 2005 Mar; 109(8):3104-11. PubMed ID: 16851329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of local solidification and remelting during dendrite coarsening - modeling and comparison with experiments.
    Zhang Q; Fang H; Xue H; Pan S; Rettenmayr M; Zhu M
    Sci Rep; 2017 Dec; 7(1):17809. PubMed ID: 29259208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal-amorphous and crystal-crystal phase transformations via virtual melting.
    Levitas VI
    Phys Rev Lett; 2005 Aug; 95(7):075701. PubMed ID: 16196796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast traveling waves in the phase-field theory: effective mobility approach versus kinetic energy approach.
    Salhoumi A; Galenko PK
    J Phys Condens Matter; 2020 May; 32(20):204003. PubMed ID: 31931497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.