These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15245281)

  • 1. Chaos in practically isolated microcavity lasers.
    Wieczorek S; Chow WW
    Phys Rev Lett; 2004 May; 92(21):213901. PubMed ID: 15245281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signature of Wave Chaos in Spectral Characteristics of Microcavity Lasers.
    Sunada S; Shinohara S; Fukushima T; Harayama T
    Phys Rev Lett; 2016 May; 116(20):203903. PubMed ID: 27258870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of two laterally coupled semiconductor lasers: strong- and weak-coupling theory.
    Erzgräber H; Wieczorek S; Krauskopf B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066201. PubMed ID: 19256919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of two semiconductor lasers coupled by a passive resonator.
    Erzgräber H; Wieczorek S; Krauskopf B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056201. PubMed ID: 20866301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-induced chaos in a single-mode inversionless laser.
    Wieczorek S; Chow WW
    Phys Rev Lett; 2006 Sep; 97(11):113903. PubMed ID: 17025888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled lasers: phase versus chaos synchronization.
    Reidler I; Nixon M; Aviad Y; Guberman S; Friesem AA; Rosenbluh M; Davidson N; Kanter I
    Opt Lett; 2013 Oct; 38(20):4174-7. PubMed ID: 24321952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternation of Defects and Phase Turbulence Induces Extreme Events in an Extended Microcavity Laser.
    Barbay S; Coulibaly S; Clerc MG
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of leader-laggard chaos synchronization in mutually coupled external-cavity semiconductor lasers.
    Jiang N; Pan W; Luo B; Yan L; Xiang S; Yang L; Zheng D; Li N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066217. PubMed ID: 20866511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of chaos and other dynamical transitions induced by intercellular coupling in a model for cyclic AMP signaling in Dictyostelium cells.
    Li YX; Halloy J; Martiel JL; Goldbeter A
    Chaos; 1992 Oct; 2(4):501-512. PubMed ID: 12779999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaotic dynamics in coupled resonator sequences.
    Mancinelli M; Borghi M; Ramiro-Manzano F; Fedeli JM; Pavesi L
    Opt Express; 2014 Jun; 22(12):14505-16. PubMed ID: 24977546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics, bifurcations and chaos in coupled lasers.
    Lindberg AM; Fordell T; Valling S
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):427-35. PubMed ID: 17681913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaos-assisted directional light emission from microcavity lasers.
    Shinohara S; Harayama T; Fukushima T; Hentschel M; Sasaki T; Narimanov EE
    Phys Rev Lett; 2010 Apr; 104(16):163902. PubMed ID: 20482050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relevance of symmetry for the synchronization of chaotic optical systems and the related Lang-Kobayashi model limitations.
    Matus M; Moloney JV; Kolesik M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016208. PubMed ID: 12636586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical time domain reflectometry based on a self-chaotic circular-sided microcavity laser.
    Li JC; Dong YX; Lei BJ; Xiao JL; Yang YD; Huang YZ
    Appl Opt; 2024 Jan; 63(1):154-158. PubMed ID: 38175016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with optical injection.
    Gatare I; Sciamanna M; Nizette M; Thienpont H; Panajotov K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026218. PubMed ID: 19792242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bloch theorem dictated wave chaos in microcavity crystals.
    Yi CH; Park HC; Park MJ
    Light Sci Appl; 2023 May; 12(1):106. PubMed ID: 37142580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear dynamic control of GaAs nanomechanical resonators using lasers.
    Jin L; Zhao H; Li Z; Jiang Z; Li L; Yan X
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33789255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers.
    Heil T; Fischer I; Elsässer W; Mulet J; Mirasso CR
    Phys Rev Lett; 2001 Jan; 86(5):795-8. PubMed ID: 11177942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study of time-delay signature of chaos in mutually coupled vertical-cavity surface-emitting lasers subject to polarization optical injection.
    Hong Y
    Opt Express; 2013 Jul; 21(15):17894-903. PubMed ID: 23938661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of an array of mutually coupled semiconductor lasers.
    Yanchuk S; Stefanski A; Kapitaniak T; Wojewoda J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016209. PubMed ID: 16486260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.