BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 15245330)

  • 1. Comparative biochemical analysis of three bacterial prolyl endopeptidases: implications for coeliac sprue.
    Shan L; Marti T; Sollid LM; Gray GM; Khosla C
    Biochem J; 2004 Oct; 383(Pt 2):311-8. PubMed ID: 15245330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation, purification, formulation, and pharmacological evaluation of a prolyl endopeptidase from Myxococcus xanthus: implications for Celiac Sprue therapy.
    Gass J; Ehren J; Strohmeier G; Isaacs I; Khosla C
    Biotechnol Bioeng; 2005 Dec; 92(6):674-84. PubMed ID: 16136593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination enzyme therapy for gastric digestion of dietary gluten in patients with celiac sprue.
    Gass J; Bethune MT; Siegel M; Spencer A; Khosla C
    Gastroenterology; 2007 Aug; 133(2):472-80. PubMed ID: 17681168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and mechanistic analysis of two prolyl endopeptidases: role of interdomain dynamics in catalysis and specificity.
    Shan L; Mathews II; Khosla C
    Proc Natl Acad Sci U S A; 2005 Mar; 102(10):3599-604. PubMed ID: 15738423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification, characterization and the use of recombinant prolyl oligopeptidase from Myxococcus xanthus for gluten hydrolysis.
    Kocadag Kocazorbaz E; Zihnioglu F
    Protein Expr Purif; 2017 Jan; 129():101-107. PubMed ID: 27693621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new microbial gluten-degrading prolyl endopeptidase: Potential application in celiac disease to reduce gluten immunogenic peptides.
    Moreno Amador ML; Arévalo-Rodríguez M; Durán EM; Martínez Reyes JC; Sousa Martín C
    PLoS One; 2019; 14(6):e0218346. PubMed ID: 31246975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue.
    Shan L; Qiao SW; Arentz-Hansen H; Molberg Ø; Gray GM; Sollid LM; Khosla C
    J Proteome Res; 2005; 4(5):1732-41. PubMed ID: 16212427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease.
    Stepniak D; Spaenij-Dekking L; Mitea C; Moester M; de Ru A; Baak-Pablo R; van Veelen P; Edens L; Koning F
    Am J Physiol Gastrointest Liver Physiol; 2006 Oct; 291(4):G621-9. PubMed ID: 16690904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo fluorescence imaging of exogenous enzyme activity in the gastrointestinal tract.
    Fuhrmann G; Leroux JC
    Proc Natl Acad Sci U S A; 2011 May; 108(22):9032-7. PubMed ID: 21576491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of combination enzyme therapy for celiac sprue.
    Siegel M; Bethune MT; Gass J; Ehren J; Xia J; Johannsen A; Stuge TB; Gray GM; Lee PP; Khosla C
    Chem Biol; 2006 Jun; 13(6):649-58. PubMed ID: 16793522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel prolyl tri/tetra-peptidyl aminopeptidase from Streptomyces mobaraensis: substrate specificity and enzyme gene cloning.
    Umezawa Y; Yokoyama K; Kikuchi Y; Date M; Ito K; Yoshimoto T; Matsui H
    J Biochem; 2004 Sep; 136(3):293-300. PubMed ID: 15598885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bile acids as modulators of enzyme activity and stability.
    Robic S; Linscott KB; Aseem M; Humphreys EA; McCartha SR
    Protein J; 2011 Dec; 30(8):539-45. PubMed ID: 21965022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein engineering of improved prolyl endopeptidases for celiac sprue therapy.
    Ehren J; Govindarajan S; Morón B; Minshull J; Khosla C
    Protein Eng Des Sel; 2008 Dec; 21(12):699-707. PubMed ID: 18836204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery, cloning and characterisation of proline specific prolyl endopeptidase, a gluten degrading thermo-stable enzyme from Sphaerobacter thermophiles.
    Shetty R; Vestergaard M; Jessen F; Hägglund P; Knorr V; Koehler P; Prakash HS; Hobley TJ
    Enzyme Microb Technol; 2017 Dec; 107():57-63. PubMed ID: 28899487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrates containing phosphorylated residues adjacent to proline decrease the cleavage by proline-specific peptidases.
    Kaspari A; Diefenthal T; Grosche G; Schierhorn A; Demuth HU
    Biochim Biophys Acta; 1996 Mar; 1293(1):147-53. PubMed ID: 8652620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A scaleable manufacturing process for pro-EP-B2, a cysteine protease from barley indicated for celiac sprue.
    Vora H; McIntire J; Kumar P; Deshpande M; Khosla C
    Biotechnol Bioeng; 2007 Sep; 98(1):177-85. PubMed ID: 17385743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolyl endopeptidases.
    Gass J; Khosla C
    Cell Mol Life Sci; 2007 Feb; 64(3):345-55. PubMed ID: 17160352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual secondary specificity of prolyl oligopeptidase and the different reactivities of its two forms toward charged substrates.
    Polgár L
    Biochemistry; 1992 Aug; 31(33):7729-35. PubMed ID: 1510958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase.
    Alvarez-Sieiro P; Martin MC; Redruello B; Del Rio B; Ladero V; Palanski BA; Khosla C; Fernandez M; Alvarez MA
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6689-700. PubMed ID: 24752841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intestinal digestive resistance of immunodominant gliadin peptides.
    Hausch F; Shan L; Santiago NA; Gray GM; Khosla C
    Am J Physiol Gastrointest Liver Physiol; 2002 Oct; 283(4):G996-G1003. PubMed ID: 12223360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.