These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
526 related articles for article (PubMed ID: 15245487)
21. Expression of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in the fetal rat brain: evidence for a nuclear energy shuttle. Chen L; Roberts R; Friedman DL J Comp Neurol; 1995 Dec; 363(3):389-401. PubMed ID: 8847407 [TBL] [Abstract][Full Text] [Related]
22. GATM and GAMT synthesize creatine locally throughout the mammalian body and within oligodendrocytes of the brain. Baker SA; Gajera CR; Wawro AM; Corces MR; Montine TJ Brain Res; 2021 Nov; 1770():147627. PubMed ID: 34418357 [TBL] [Abstract][Full Text] [Related]
23. Functional coupling of creatine kinases in muscles: species and tissue specificity. Ventura-Clapier R; Kuznetsov A; Veksler V; Boehm E; Anflous K Mol Cell Biochem; 1998 Jul; 184(1-2):231-47. PubMed ID: 9746324 [TBL] [Abstract][Full Text] [Related]
24. Dissociation of AGAT, GAMT and SLC6A8 in CNS: relevance to creatine deficiency syndromes. Braissant O; Béard E; Torrent C; Henry H Neurobiol Dis; 2010 Feb; 37(2):423-33. PubMed ID: 19879361 [TBL] [Abstract][Full Text] [Related]
25. Guanidinoacetate methyltransferase in the mouse: extensive expression in Sertoli cells of testis and in microvilli of caput epididymis. Lee H; Ogawa H; Fujioka M; Gerton GL Biol Reprod; 1994 Jan; 50(1):152-62. PubMed ID: 8312439 [TBL] [Abstract][Full Text] [Related]
26. Brain-type creatine kinase BB-CK interacts with the Golgi Matrix Protein GM130 in early prophase. Bürklen TS; Hirschy A; Wallimann T Mol Cell Biochem; 2007 Mar; 297(1-2):53-64. PubMed ID: 17036164 [TBL] [Abstract][Full Text] [Related]
27. Creatine biosynthesis and transport by the term human placenta. Ellery SJ; Della Gatta PA; Bruce CR; Kowalski GM; Davies-Tuck M; Mockler JC; Murthi P; Walker DW; Snow RJ; Dickinson H Placenta; 2017 Apr; 52():86-93. PubMed ID: 28454702 [TBL] [Abstract][Full Text] [Related]
28. Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Streijger F; Oerlemans F; Ellenbroek BA; Jost CR; Wieringa B; Van der Zee CE Behav Brain Res; 2005 Feb; 157(2):219-34. PubMed ID: 15639173 [TBL] [Abstract][Full Text] [Related]
29. Immunohistochemical localization of the amino acid transporter SNAT2 in the rat brain. González-González IM; Cubelos B; Giménez C; Zafra F Neuroscience; 2005; 130(1):61-73. PubMed ID: 15561425 [TBL] [Abstract][Full Text] [Related]
30. Creatine kinase isoenzymes in chicken cerebellum: specific localization of brain-type creatine kinase in Bergmann glial cells and muscle-type creatine kinase in Purkinje neurons. Hemmer W; Zanolla E; Furter-Graves EM; Eppenberger HM; Wallimann T Eur J Neurosci; 1994 Apr; 6(4):538-49. PubMed ID: 8025709 [TBL] [Abstract][Full Text] [Related]
31. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. Lowe MT; Kim EH; Faull RL; Christie DL; Waldvogel HJ J Cereb Blood Flow Metab; 2013 Aug; 33(8):1295-306. PubMed ID: 23715059 [TBL] [Abstract][Full Text] [Related]
32. MR spectroscopy of muscle and brain in guanidinoacetate methyltransferase (GAMT)-deficient mice: validation of an animal model to study creatine deficiency. Renema WK; Schmidt A; van Asten JJ; Oerlemans F; Ullrich K; Wieringa B; Isbrandt D; Heerschap A Magn Reson Med; 2003 Nov; 50(5):936-43. PubMed ID: 14587004 [TBL] [Abstract][Full Text] [Related]
33. Expression of creatine kinase isoenzyme genes during postnatal development of rat brain cerebellum: evidence for transcriptional regulation. Shen W; Willis D; Zhang Y; Schlattner U; Wallimann T; Molloy GR Biochem J; 2002 Oct; 367(Pt 2):369-80. PubMed ID: 12093362 [TBL] [Abstract][Full Text] [Related]
34. Severely altered guanidino compound levels, disturbed body weight homeostasis and impaired fertility in a mouse model of guanidinoacetate N-methyltransferase (GAMT) deficiency. Schmidt A; Marescau B; Boehm EA; Renema WK; Peco R; Das A; Steinfeld R; Chan S; Wallis J; Davidoff M; Ullrich K; Waldschütz R; Heerschap A; De Deyn PP; Neubauer S; Isbrandt D Hum Mol Genet; 2004 May; 13(9):905-21. PubMed ID: 15028668 [TBL] [Abstract][Full Text] [Related]
35. Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent. Kekelidze T; Khait I; Togliatti A; Benzecry JM; Wieringa B; Holtzman D J Neurosci Res; 2001 Dec; 66(5):866-72. PubMed ID: 11746413 [TBL] [Abstract][Full Text] [Related]
36. Expression of the brain creatine kinase gene is low in neuroblastoma cell lines. Wilson CD; Shen W; Molloy GR Dev Neurosci; 1997; 19(5):375-83. PubMed ID: 9323458 [TBL] [Abstract][Full Text] [Related]
37. Characterization of TROY/TNFRSF19/TAJ-expressing cells in the adult mouse forebrain. Hisaoka T; Morikawa Y; Senba E Brain Res; 2006 Sep; 1110(1):81-94. PubMed ID: 16870160 [TBL] [Abstract][Full Text] [Related]
38. Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue. Andres RH; Huber AW; Schlattner U; Pérez-Bouza A; Krebs SH; Seiler RW; Wallimann T; Widmer HR Neuroscience; 2005; 133(3):701-13. PubMed ID: 15890457 [TBL] [Abstract][Full Text] [Related]
39. [Creatine kinase isoenzymes--characterization and functions in cell]. Grzyb K; Skorkowski EF Postepy Biochem; 2008; 54(3):274-83. PubMed ID: 19112826 [TBL] [Abstract][Full Text] [Related]
40. ALTERATIONS IN BRAIN CREATINE CONCENTRATIONS UNDER LONG-TERM SOCIAL ISOLATION (EXPERIMENTAL STUDY). Koshoridze N; Kuchukashvili Z; Menabde K; Lekiashvili Sh; Koshoridze M Georgian Med News; 2016 Feb; (251):70-7. PubMed ID: 27001789 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]