BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1524589)

  • 1. [Lignin and ligninase].
    Levit MN; Shkrob AM
    Bioorg Khim; 1992 Mar; 18(3):309-45. PubMed ID: 1524589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of ligninase from Phanerochaete chrysosporium and their possible applications.
    Tien M
    Crit Rev Microbiol; 1987; 15(2):141-68. PubMed ID: 3322681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and action mechanism of ligninolytic enzymes.
    Wong DW
    Appl Biochem Biotechnol; 2009 May; 157(2):174-209. PubMed ID: 18581264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and sequencing of a cDNA for a ligninase from Phanerochaete chrysosporium.
    Tien M; Tu CP
    Nature; 1987 Apr 2-8; 326(6112):520-3. PubMed ID: 3561490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential oxidation sites for oxidative polymerization of lignin.
    Sasaki S; Nonaka D; Wariishi H; Tsutsumi Y; Kondo R
    Phytochemistry; 2008 Jan; 69(2):348-55. PubMed ID: 17910963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations.
    Baciocchi E; Fabbri C; Lanzalunga O
    J Org Chem; 2003 Nov; 68(23):9061-9. PubMed ID: 14604381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regioselectivity of enzymatic and photochemical single electron transfer promoted carbon-carbon bond fragmentation reactions of tetrameric lignin model compounds.
    Cho DW; Latham JA; Park HJ; Yoon UC; Langan P; Dunaway-Mariano D; Mariano PS
    J Org Chem; 2011 Apr; 76(8):2840-52. PubMed ID: 21384857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trametes versicolor ligninase: isozyme sequence homology and substrate specificity.
    Jönson L; Karlsson O; Lundquist K; Nyman PO
    FEBS Lett; 1989 Apr; 247(1):143-6. PubMed ID: 2707445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium.
    Paszczyński A; Huynh VB; Crawford R
    Arch Biochem Biophys; 1986 Feb; 244(2):750-65. PubMed ID: 3080953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of fungal peroxidases in biological ligninolysis.
    Hammel KE; Cullen D
    Curr Opin Plant Biol; 2008 Jun; 11(3):349-55. PubMed ID: 18359268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes.
    Wang W; Zhang C; Sun X; Su S; Li Q; Linhardt RJ
    World J Microbiol Biotechnol; 2017 Jun; 33(6):125. PubMed ID: 28540631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mediation of veratryl alcohol in oxidations promoted by lignin peroxidase: the lifetime of veratryl alcohol radical cation.
    Baciocchi E; Bietti M; Gerini MF; Lanzalunga O
    Biochem Biophys Res Commun; 2002 May; 293(2):832-5. PubMed ID: 12054545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics and function of a low-molecular-weight compound with reductive activity from Phanerochaetechrysosporium in lignin biodegradation.
    Hu M; Zhang W; Wu Y; Gao P; Lu X
    Bioresour Technol; 2009 Mar; 100(6):2077-81. PubMed ID: 19038543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radical intermediates during degradation of lignin-model compounds and environmental pollutants: an electron spin resonance study.
    Kalyanaraman B
    Xenobiotica; 1995 Jul; 25(7):667-75. PubMed ID: 7483665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligninase-mediated removal of 17beta-estradiol from water in the presence of natural organic matter: efficiency and pathways.
    Mao L; Huang Q; Luo Q; Lu J; Yang X; Gao S
    Chemosphere; 2010 Jun; 80(4):469-73. PubMed ID: 20416920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin.
    Kirk TK; Tien M; Kersten PJ; Mozuch MD; Kalyanaraman B
    Biochem J; 1986 May; 236(1):279-87. PubMed ID: 3024619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity of lignin peroxidase and a S168W variant of manganese peroxidase.
    Timofeevski SL; Nie G; Reading NS; Aust SD
    Arch Biochem Biophys; 2000 Jan; 373(1):147-53. PubMed ID: 10620333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways.
    Pérez-Boada M; Ruiz-Dueñas FJ; Pogni R; Basosi R; Choinowski T; Martínez MJ; Piontek K; Martínez AT
    J Mol Biol; 2005 Nov; 354(2):385-402. PubMed ID: 16246366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological pretreatment of softwood Pinus densiflora by three white rot fungi.
    Lee JW; Gwak KS; Park JY; Park MJ; Choi DH; Kwon M; Choi IG
    J Microbiol; 2007 Dec; 45(6):485-91. PubMed ID: 18176529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of lignin by white rot fungi.
    Leonowicz A; Matuszewska A; Luterek J; Ziegenhagen D; Wojtaś-Wasilewska M; Cho NS; Hofrichter M; Rogalski J
    Fungal Genet Biol; 1999; 27(2-3):175-85. PubMed ID: 10441443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.