BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15246663)

  • 1. Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins.
    Pack SP; Yoo YJ
    J Biotechnol; 2004 Aug; 111(3):269-77. PubMed ID: 15246663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein psychrophilicity: role of residual structural properties in adaptation of proteins to low temperatures.
    Jahandideh S; Barzegari Asadabadi E; Abdolmaleki P; Jahandideh M; Hoseini S
    J Theor Biol; 2007 Oct; 248(4):721-6. PubMed ID: 17669434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms.
    Glyakina AV; Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2007 Sep; 23(17):2231-8. PubMed ID: 17599925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two exposed amino acid residues confer thermostability on a cold shock protein.
    Perl D; Mueller U; Heinemann U; Schmid FX
    Nat Struct Biol; 2000 May; 7(5):380-3. PubMed ID: 10802734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Packing-based difference of structural features between thermophilic and mesophilic proteins.
    Pack SP; Yoo YJ
    Int J Biol Macromol; 2005 Apr; 35(3-4):169-74. PubMed ID: 15811472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein.
    Lee DY; Kim KA; Yu YG; Kim KS
    Biochem Biophys Res Commun; 2004 Jul; 320(3):900-6. PubMed ID: 15240133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environment specific substitution tables for thermophilic proteins.
    Mizuguchi K; Sele M; Cubellis MV
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S15. PubMed ID: 17430559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein thermal stability: the role of protein structure and aqueous environment.
    Pechkova E; Sivozhelezov V; Nicolini C
    Arch Biochem Biophys; 2007 Oct; 466(1):40-8. PubMed ID: 17765863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A comparison of amino acid composition of proteins from thermophiles and mesophiles].
    Lu B; Wang G; Huang P
    Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):20-5. PubMed ID: 12549384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective factors in thermostability of thermophilic proteins.
    Sadeghi M; Naderi-Manesh H; Zarrabi M; Ranjbar B
    Biophys Chem; 2006 Feb; 119(3):256-70. PubMed ID: 16253416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid coupling patterns in thermophilic proteins.
    Liang HK; Huang CM; Ko MT; Hwang JK
    Proteins; 2005 Apr; 59(1):58-63. PubMed ID: 15688447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability.
    Thompson MJ; Eisenberg D
    J Mol Biol; 1999 Jul; 290(2):595-604. PubMed ID: 10390356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of discriminative sequence motifs in proteins obtained from prokaryotes grown at various temperatures.
    Wu LC; Horng JT; Huang SL; Huang HD; Liu BJ
    J Comput Chem; 2006 Apr; 27(6):798-808. PubMed ID: 16534753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Search for structural factors responsible for the stability of proteins from thermophilic organisms].
    Gliakina AV; Lobanov AV; Galzitskaia OV
    Mol Biol (Mosk); 2007; 41(4):681-7. PubMed ID: 17936989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics studies on the thermostability of family 11 xylanases.
    Purmonen M; Valjakka J; Takkinen K; Laitinen T; Rouvinen J
    Protein Eng Des Sel; 2007 Nov; 20(11):551-9. PubMed ID: 17977846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein thermostabilizing factors: high relative occurrence of amino acids, residual properties, and secondary structure type in different residual state.
    Pack SP; Kang TJ; Yoo YJ
    Appl Biochem Biotechnol; 2013 Nov; 171(5):1212-26. PubMed ID: 23564432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural plasticity of thermophilic serine hydroxymethyltransferases.
    Paiardini A; Gianese G; Bossa F; Pascarella S
    Proteins; 2003 Jan; 50(1):122-34. PubMed ID: 12471605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variable gap penalty for protein sequence-structure alignment.
    Madhusudhan MS; Marti-Renom MA; Sanchez R; Sali A
    Protein Eng Des Sel; 2006 Mar; 19(3):129-33. PubMed ID: 16423846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic distributions of hydrophobic amino acids allows the definition of fundamental building blocks to align distantly related proteins.
    Baussand J; Deremble C; Carbone A
    Proteins; 2007 May; 67(3):695-708. PubMed ID: 17299747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.