These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 15247392)

  • 1. Microarray analyses of gene expression during adventitious root development in Pinus contorta.
    Brinker M; van Zyl L; Liu W; Craig D; Sederoff RR; Clapham DH; von Arnold S
    Plant Physiol; 2004 Jul; 135(3):1526-39. PubMed ID: 15247392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The GRAS gene family in pine: transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots.
    Abarca D; Pizarro A; Hernández I; Sánchez C; Solana SP; Del Amo A; Carneros E; Díaz-Sala C
    BMC Plant Biol; 2014 Dec; 14():354. PubMed ID: 25547982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos.
    Stasolla C; van Zyl L; Egertsdotter U; Craig D; Liu W; Sederoff RR
    Plant Physiol; 2003 Jan; 131(1):49-60. PubMed ID: 12529514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments.
    Li YH; Zou MH; Feng BH; Huang X; Zhang Z; Sun GM
    Plant Physiol Biochem; 2012 Jun; 55():33-42. PubMed ID: 22522578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two S-adenosylmethionine synthetase-encoding genes differentially expressed during adventitious root development in Pinus contorta.
    Lindroth AM; Saarikoski P; Flygh G; Clapham D; Grönroos R; Thelander M; Ronne H; von Arnold S
    Plant Mol Biol; 2001 Jun; 46(3):335-46. PubMed ID: 11488480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis.
    Lewis DR; Olex AL; Lundy SR; Turkett WH; Fetrow JS; Muday GK
    Plant Cell; 2013 Sep; 25(9):3329-46. PubMed ID: 24045021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis.
    Sukumar P; Maloney GS; Muday GK
    Plant Physiol; 2013 Jul; 162(3):1392-405. PubMed ID: 23677937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments.
    Li YH; Zhang HN; Wu QS; Muday GK
    Planta; 2017 Jun; 245(6):1193-1213. PubMed ID: 28303391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and expression of a Pinus radiata putative ortholog to the Arabidopsis SHORT-ROOT gene.
    Solé A; Sánchez C; Vielba JM; Valladares S; Abarca D; Díaz-Sala C
    Tree Physiol; 2008 Nov; 28(11):1629-39. PubMed ID: 18765368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster.
    de Vega-Bartol JJ; Simões M; Lorenz WW; Rodrigues AS; Alba R; Dean JF; Miguel CM
    BMC Plant Biol; 2013 Aug; 13():123. PubMed ID: 23987738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo transcriptome analysis provides insights into formation of in vitro adventitious root from leaf explants of Arnebia euchroma.
    Devi J; Kaur E; Swarnkar MK; Acharya V; Bhushan S
    BMC Plant Biol; 2021 Sep; 21(1):414. PubMed ID: 34503445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.
    Wei K; Wang L; Cheng H; Zhang C; Ma C; Zhang L; Gong W; Wu L
    Gene; 2013 Feb; 514(2):91-8. PubMed ID: 23201417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice.
    Coudert Y; Bès M; Le TV; Pré M; Guiderdoni E; Gantet P
    BMC Genomics; 2011 Aug; 12():387. PubMed ID: 21806801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a Pinus pinaster cDNA encoding an auxin up-regulated putative peroxidase in roots.
    Charvet-Candela V; Hitchin S; Reddy MS; Cournoyer B; Marmeisse R; Gay G
    Tree Physiol; 2002 Mar; 22(4):231-8. PubMed ID: 11874719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein.
    Busov VB; Johannes E; Whetten RW; Sederoff RR; Spiker SL; Lanz-Garcia C; Goldfarb B
    Planta; 2004 Apr; 218(6):916-27. PubMed ID: 14722770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of water-stress-responsive genes in hydroponically grown maritime pine (Pinus pinaster) seedlings.
    Dubos C; Le Provost G; Pot D; Salin F; Lalane C; Madur D; Frigerio JM; Plomion C
    Tree Physiol; 2003 Feb; 23(3):169-79. PubMed ID: 12566267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two SCARECROW-LIKE genes are induced in response to exogenous auxin in rooting-competent cuttings of distantly related forest species.
    Sánchez C; Vielba JM; Ferro E; Covelo G; Solé A; Abarca D; de Mier BS; Díaz-Sala C
    Tree Physiol; 2007 Oct; 27(10):1459-70. PubMed ID: 17669736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic profiling and discovery of key genes involved in adventitious root formation from green cuttings of highbush blueberry (Vaccinium corymbosum L.).
    An H; Zhang J; Xu F; Jiang S; Zhang X
    BMC Plant Biol; 2020 Apr; 20(1):182. PubMed ID: 32334538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The maize (Zea mays L.) AUXIN/INDOLE-3-ACETIC ACID gene family: phylogeny, synteny, and unique root-type and tissue-specific expression patterns during development.
    Ludwig Y; Zhang Y; Hochholdinger F
    PLoS One; 2013; 8(11):e78859. PubMed ID: 24223858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized gene expression changes during adventitious root formation in black walnut (Juglans nigra L.).
    Stevens ME; Woeste KE; Pijut PM
    Tree Physiol; 2018 Jun; 38(6):877-894. PubMed ID: 29378021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.