These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15248532)

  • 1. Surrogate data analysis for assessing the significance of the coherence function.
    Faes L; Pinna GD; Porta A; Maestri R; Nollo G
    IEEE Trans Biomed Eng; 2004 Jul; 51(7):1156-66. PubMed ID: 15248532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing frequency-domain causality in multivariate time series.
    Faes L; Porta A; Nollo G
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1897-906. PubMed ID: 20176533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-varying surrogate data to assess nonlinearity in nonstationary time series: application to heart rate variability.
    Faes L; Zhao H; Chon KH; Nollo G
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):685-95. PubMed ID: 19272872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complexity and nonlinearity in short-term heart period variability: comparison of methods based on local nonlinear prediction.
    Porta A; Guzzetti S; Furlan R; Gnecchi-Ruscone T; Montano N; Malliani A
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):94-106. PubMed ID: 17260860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed predictability and cross-validation to assess non-linear Granger causality in short cardiovascular variability series.
    Faes L; Cucino R; Nollo G
    Biomed Tech (Berl); 2006 Oct; 51(4):255-9. PubMed ID: 17061952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sampling frequency of the RR interval time series for spectral analysis of heart rate variability.
    Singh D; Vinod K; Saxena SC
    J Med Eng Technol; 2004; 28(6):263-72. PubMed ID: 15513744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time domain parameters can be estimated with less statistical error than frequency domain parameters in the analysis of heart rate variability.
    Kuss O; Schumann B; Kluttig A; Greiser KH; Haerting J
    J Electrocardiol; 2008; 41(4):287-91. PubMed ID: 18367200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental approach for testing the uncoupling between cardiovascular variability series.
    Faes L; Nollo G; Antolini R
    Med Biol Eng Comput; 2002 Sep; 40(5):565-70. PubMed ID: 12452418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causal transfer function analysis to describe closed loop interactions between cardiovascular and cardiorespiratory variability signals.
    Faes L; Porta A; Cucino R; Cerutti S; Antolini R; Nollo G
    Biol Cybern; 2004 Jun; 90(6):390-9. PubMed ID: 15278463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved windowing technique for heart rate variability power spectrum estimation.
    Singh D; Vinod K; Saxena SC; Deepak KK
    J Med Eng Technol; 2005; 29(2):95-101. PubMed ID: 15804859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Causal cross-spectral analysis of heart rate and blood pressure variability for describing the impairment of the cardiovascular control in neurally mediated syncope.
    Faes L; Widesott L; Del Greco M; Antolini R; Nollo G
    IEEE Trans Biomed Eng; 2006 Jan; 53(1):65-73. PubMed ID: 16402604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of coherence between blood flow and spontaneous EEG activity in neonates.
    Simpson DM; BoteroRosas DA; Infantosi AF
    IEEE Trans Biomed Eng; 2005 May; 52(5):852-8. PubMed ID: 15887534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical method for detection of phase-locking episodes in neural oscillations.
    Hurtado JM; Rubchinsky LL; Sigvardt KA
    J Neurophysiol; 2004 Apr; 91(4):1883-98. PubMed ID: 15010498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral analysis of time series of events: effect of respiration on heart rate in neonates.
    van Drongelen W; Williams AL; Lasky RE
    Physiol Meas; 2009 Jan; 30(1):43-61. PubMed ID: 19075368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractal characteristics of breath to breath timing in sleeping infants.
    Larsen PD; Elder DE; Tzeng YC; Campbell AJ; Galletly DC
    Respir Physiol Neurobiol; 2004 Feb; 139(3):263-70. PubMed ID: 15122992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing for directed influences among neural signals using partial directed coherence.
    Schelter B; Winterhalder M; Eichler M; Peifer M; Hellwig B; Guschlbauer B; Lücking CH; Dahlhaus R; Timmer J
    J Neurosci Methods; 2006 Apr; 152(1-2):210-9. PubMed ID: 16269188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cartesian time--frequency approach to reveal brain interaction dynamics.
    Marzetti L; Della Penna S; Nolte G; Franciotti R; Stefanics G; Romani GL
    Brain Topogr; 2007; 19(3):147-54. PubMed ID: 17587168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bicoherence analysis of new cardiovascular spectral components observed in heart-transplant patients: statistical approach for bicoherence thresholding.
    Pinhas I; Toledo E; Aravot D; Akselrod S
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1774-83. PubMed ID: 15490824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of transient renal autoregulatory mechanisms using time-frequency spectral techniques.
    Wang H; Siu K; Ju K; Moore LC; Chon KH
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1033-9. PubMed ID: 15977733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiparametric inference for surrogate endpoints with bivariate censored data.
    Ghosh D
    Biometrics; 2008 Mar; 64(1):149-56. PubMed ID: 17651457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.