These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15248720)

  • 1. Interactions of selenate with copper(I) oxide particles.
    Walcarius A; Devoy J; Bessière J
    Langmuir; 2004 Jul; 20(15):6335-43. PubMed ID: 15248720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroscopic and spectroscopic characterization of selenate, selenite, and chromate adsorption at the solid-water interface of gamma-Al(2)O(3).
    Elzinga EJ; Tang Y; McDonald J; DeSisto S; Reeder RJ
    J Colloid Interface Sci; 2009 Dec; 340(2):153-9. PubMed ID: 19796769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface.
    Peak D
    J Colloid Interface Sci; 2006 Nov; 303(2):337-45. PubMed ID: 16949599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of iodide on copper(I) sulfide minerals.
    Lefèvre G; Bessière J; Ehrhardt JJ; Walcarius A
    J Environ Radioact; 2003; 70(1-2):73-83. PubMed ID: 12915061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular structures of citrate and tricarballylate adsorbed on alpha-FeOOH particles in aqueous suspensions.
    Lindegren M; Loring JS; Persson P
    Langmuir; 2009 Sep; 25(18):10639-47. PubMed ID: 19678691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by FeII-bearing minerals.
    Scheinost AC; Kirsch R; Banerjee D; Fernandez-Martinez A; Zaenker H; Funke H; Charlet L
    J Contam Hydrol; 2008 Dec; 102(3-4):228-45. PubMed ID: 18976832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of copper(II) by iron(II).
    Matocha CJ; Karathanasis AD; Rakshit S; Wagner KM
    J Environ Qual; 2005; 34(5):1539-46. PubMed ID: 16091606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and environmental implications of selenate co-precipitation with barite.
    Das S; Essilfie-Dughan J; Hendry MJ
    Environ Res; 2020 Jul; 186():109607. PubMed ID: 32668549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and hydrogen bonding of the hydrated selenite and selenate ions in aqueous solution.
    Eklund L; Persson I
    Dalton Trans; 2014 May; 43(17):6315-21. PubMed ID: 24492478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of copper and palladium on the reduction of bromate by Fe(0).
    Xie L; Shang C
    Chemosphere; 2006 Aug; 64(6):919-30. PubMed ID: 16504241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrepancies in thorium oxide solubility values: study of attachment/detachment processes at the solid/solution interface.
    Vandenborre J; Grambow B; Abdelouas A
    Inorg Chem; 2010 Oct; 49(19):8736-48. PubMed ID: 20804204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of cobalt species on the interface, which is developed between aqueous solution and metal oxides used for the preparation of supported catalysts: a critical review.
    Bourikas K; Kordulis C; Vakros J; Lycourghiotis A
    Adv Colloid Interface Sci; 2004 Aug; 110(3):97-120. PubMed ID: 15328060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic storing of O2 as H2O2 mediated by high surface area CuO. Evidence for a reductive-oxidative interfacial mechanism.
    Bandara J; Guasaquillo I; Bowen P; Soare L; Jardim WF; Kiwi J
    Langmuir; 2005 Aug; 21(18):8554-9. PubMed ID: 16114971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XPS study of interface and ligand effects in supported Cu2O and CuO nanometric particles.
    Morales J; Espinos JP; Caballero A; Gonzalez-Elipe AR; Mejias JA
    J Phys Chem B; 2005 Apr; 109(16):7758-65. PubMed ID: 16851901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic evidences of the existence of positively charged species at the quartz-aqueous solution interface.
    Pokrovsky OS; Golubev SV; Mielczarski JA
    J Colloid Interface Sci; 2006 Apr; 296(1):189-94. PubMed ID: 16225886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.
    Apak R; Güçlü K; Ozyürek M; Karademir SE
    J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of aqueous Hg(II) by mackinawite (FeS).
    Liu J; Valsaraj KT; Devai I; DeLaune RD
    J Hazard Mater; 2008 Sep; 157(2-3):432-40. PubMed ID: 18280650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.