These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15248743)

  • 1. Monte Carlo models for nanoparticle formation in two microemulsion systems.
    Jain R; Mehra A
    Langmuir; 2004 Jul; 20(15):6507-13. PubMed ID: 15248743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coagulation of nanoparticles in reverse micellar systems: a Monte Carlo model.
    Jain R; Shukla D; Mehra A
    Langmuir; 2005 Nov; 21(24):11528-33. PubMed ID: 16285836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Population balance models and Monte Carlo simulation for nanoparticle formation in water-in-oil microemulsions: implications for CdS synthesis.
    Ethayaraja M; Bandyopadhyaya R
    J Am Chem Soc; 2006 Dec; 128(51):17102-13. PubMed ID: 17177463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of the kinetics of nanoparticle formation in microemulsions.
    de Dios M; Barroso F; Tojo C; López-Quintela MA
    J Colloid Interface Sci; 2009 May; 333(2):741-8. PubMed ID: 19215939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle formation in water-in-oil microemulsions: experiments, mechanism, and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Muthukumaran D; Bandyopadhyaya R
    Langmuir; 2007 Mar; 23(6):3418-23. PubMed ID: 17305375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of nanoparticle formation in self-assembled colloidal templates: population balance model and Monte Carlo simulation.
    Ethayaraja M; Dutta K; Bandyopadhyaya R
    J Phys Chem B; 2006 Aug; 110(33):16471-81. PubMed ID: 16913778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size and distribution prediction for nanoparticles produced by microemulsion precipitation: A Monte Carlo simulation study.
    Voigt A; Adityawarman D; Sundmacher K
    Nanotechnology; 2005 Jul; 16(7):S429-34. PubMed ID: 21727463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling of nano-alloying and structural evolution of bimetallic core-shell nanoparticles obtained via the microemulsion route.
    Barroso F; Tojo C
    J Colloid Interface Sci; 2011 Nov; 363(1):73-83. PubMed ID: 21831392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle precipitation in reverse microemulsions: particle formation dynamics and tailoring of particle size distributions.
    Niemann B; Veit P; Sundmacher K
    Langmuir; 2008 Apr; 24(8):4320-8. PubMed ID: 18307367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice Monte Carlo simulation of semiconductor nanocrystal synthesis in microemulsion droplets.
    Kuriyedath SR; Kostova B; Kevrekidis IG; Mountziaris TJ
    Langmuir; 2010 Jul; 26(13):11355-62. PubMed ID: 20392123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical nucleus size effects on nanoparticle formation in microemulsions: a comparison study between experimental and simulation results.
    Tojo C; Barroso F; de Dios M
    J Colloid Interface Sci; 2006 Apr; 296(2):591-8. PubMed ID: 16271722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of silver bromide precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion.
    Husein M; Rodil E; Vera JH
    J Colloid Interface Sci; 2004 May; 273(2):426-34. PubMed ID: 15082377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of formation of inorganic and organic nanoparticles from microemulsions.
    Destrée C; Debuigne F; Jeunieau L; Nagy JB
    Adv Colloid Interface Sci; 2006 Nov; 123-126():353-67. PubMed ID: 16860772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of YF3 nanoparticle formation in reverse micelles.
    Lemyre JL; Lamarre S; Beaupré A; Ritcey AM
    Langmuir; 2011 Oct; 27(19):11824-34. PubMed ID: 21842856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling shell formation in core-shell nanocrystals in reverse micelle systems.
    Shukla D; Mehra A
    Langmuir; 2006 Nov; 22(23):9500-6. PubMed ID: 17073471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of surface site distribution and dielectric discontinuity on the charging behavior of nanoparticles: a grand canonical Monte Carlo study.
    Seijo M; Ulrich S; Filella M; Buffle J; Stoll S
    Phys Chem Chem Phys; 2006 Dec; 8(48):5679-88. PubMed ID: 17149489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle precipitation in microemulsions: Population balance model and identification of bivariate droplet exchange kernel.
    Niemann B; Sundmacher K
    J Colloid Interface Sci; 2010 Feb; 342(2):361-71. PubMed ID: 19942227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin.
    Liu Y; Tong Z; Prud'homme RK
    Pest Manag Sci; 2008 Aug; 64(8):808-12. PubMed ID: 18366056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic modeling of CO(ad) monolayer oxidation on carbon-supported platinum nanoparticles.
    Andreaus B; Maillard F; Kocylo J; Savinova ER; Eikerling M
    J Phys Chem B; 2006 Oct; 110(42):21028-40. PubMed ID: 17048922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metalated diblock and triblock poly(ethylene oxide)-block-poly(4-vinylpyridine) copolymers: understanding of micelle and bulk structure.
    Bronstein LM; Sidorov SN; Zhirov V; Zhirov D; Kabachii YA; Kochev SY; Valetsky PM; Stein B; Kiseleva OI; Polyakov SN; Shtykova EV; Nikulina EV; Svergun DI; Khokhlov AR
    J Phys Chem B; 2005 Oct; 109(40):18786-98. PubMed ID: 16853418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.