These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15248982)

  • 1. Stratified response to environmental stress in a polar lichen characterized with FT-Raman microscopic analysis.
    Edwards HG; Wynn-Williams DD; Little SJ; de Oliveira LF; Cockell CS; Ellis-Evans JC
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):2029-33. PubMed ID: 15248982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FT-Raman spectroscopy of lichens on dolomitic rocks: an assessment of metal oxalate formation.
    Edwards HG; Seaward MR; Attwood SJ; Little SJ; de Oliveira LF; Tretiach M
    Analyst; 2003 Oct; 128(10):1218-21. PubMed ID: 14667155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lichen biodeterioration of ecclesiastical monuments in northern Spain.
    Villar SE; Edwards HG; Seaward MR
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1229-37. PubMed ID: 15084342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel extremophile strategy studied by Raman spectroscopy.
    Edwards HG
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Dec; 68(4):1126-32. PubMed ID: 17267270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopy of hot desert, high altitude epilithic lichens.
    Villar SE; Edwards HG; Seaward MR
    Analyst; 2005 May; 130(5):730-7. PubMed ID: 15852144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopy of endoliths from Antarctic cold desert environments.
    Villar SE; Edwards HG; Cockell CS
    Analyst; 2005 Feb; 130(2):156-62. PubMed ID: 15665968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-destructive analysis of pigments and other organic compounds in lichens using Fourier-transform Raman spectroscopy: a study of Antarctic epilithic lichens.
    Edwards HG; Newton EM; Wynn-Williams DD; Lewis-Smith RI
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Aug; 59(10):2301-9. PubMed ID: 12909143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lichen biodeterioration of the Convento de la Peregrina, Sahagún, Spain.
    Edwards HG; Perez FR
    Biospectroscopy; 1999; 5(1):47-52. PubMed ID: 10219880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodeterioration of granite monuments by Ochrolechia parella (L.) mass: an FT Raman spectroscopic study.
    Prieto B; Seaward MR; Edwards HG; Rivas T; Silva B
    Biospectroscopy; 1999; 5(1):53-9. PubMed ID: 10219881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ imaging of usnic acid in selected Cladonia spp. by vibrational spectroscopy.
    Liao C; Piercey-Normore MD; Sorensen JL; Gough K
    Analyst; 2010 Dec; 135(12):3242-8. PubMed ID: 20927462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [New applications of submicroscopic techniques in the study of biodegradation caused by lichen thalli].
    Ascaso C; Wierzchos J
    Microbiologia; 1994; 10(1-2):103-110. PubMed ID: 7946113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of coenzyme Q10 and beta-carotene by yeasts isolated from antarctic soil and lichen in response to ultraviolet and visible radiations.
    Dimitrova S; Pavlova K; Lukanov L; Zagorchev P
    Appl Biochem Biotechnol; 2010 Oct; 162(3):795-804. PubMed ID: 19924388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ Raman microspectroscopic identification and localization of carotenoids: approach to monitoring of UV-B irradiation stress on Antarctic fungus.
    Arcangeli C; Cannistraro S
    Biopolymers; 2000; 57(3):179-86. PubMed ID: 10805915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary identification of Beta-carotene in the vitreous asteroid bodies by micro-Raman spectroscopy and HPLC analysis.
    Lin SY; Chen KH; Cheng WT; Ho CT; Wang SL
    Microsc Microanal; 2007 Apr; 13(2):128-32. PubMed ID: 17367552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lichens survive in space: results from the 2005 LICHENS experiment.
    Sancho LG; de la Torre R; Horneck G; Ascaso C; de Los Rios A; Pintado A; Wierzchos J; Schuster M
    Astrobiology; 2007 Jun; 7(3):443-54. PubMed ID: 17630840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial metacommunities in the lichen-rock habitat.
    Bjelland T; Grube M; Hoem S; Jorgensen SL; Daae FL; Thorseth IH; Ovreås L
    Environ Microbiol Rep; 2011 Aug; 3(4):434-42. PubMed ID: 23761305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopic detection of biomolecular markers from Antarctic materials: evaluation for putative Martian habitats.
    Edwards HG; Newton EM; Dickensheets DL; Wynn-Williams DD
    Spectrochim Acta A Mol Biomol Spectrosc; 2003 Aug; 59(10):2277-90. PubMed ID: 12909141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of the antioxidant properties of Icelandic and Hawaiian lichens.
    Hagiwara K; Wright PR; Tabandera NK; Kelman D; Backofen R; Ómarsdóttir S; Wright AD
    Environ Microbiol; 2016 Sep; 18(8):2319-25. PubMed ID: 25808912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Resistance to UV radiation of microorganisms isolated from the rock biotopes of the Antarctic region].
    Romanovskaia VA; Tashirev AB; Shilin SO; Chernaia NA
    Mikrobiol Z; 2010; 72(3):8-13. PubMed ID: 20695223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments.
    Marques J; Gonçalves J; Oliveira C; Favero-Longo SE; Paz-Bermúdez G; Almeida R; Prieto B
    Ecology; 2016 Oct; 97(10):2844-2857. PubMed ID: 27859114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.