BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

531 related articles for article (PubMed ID: 15249112)

  • 1. Role of the cerebellum in implicit motor skill learning: a PET study.
    Matsumura M; Sadato N; Kochiyama T; Nakamura S; Naito E; Matsunami K; Kawashima R; Fukuda H; Yonekura Y
    Brain Res Bull; 2004 Jul; 63(6):471-83. PubMed ID: 15249112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor learning in man: a review of functional and clinical studies.
    Halsband U; Lange RK
    J Physiol Paris; 2006 Jun; 99(4-6):414-24. PubMed ID: 16730432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: an fMRI study.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Cortex; 2008 May; 44(5):482-93. PubMed ID: 18387582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of perceptual learning on motor skills of hands: a functional magnetic resonance imaging study.
    Yamada M; Kawachi T; Kawamitsu H; Yamada T; Konishi J; Fujii M; Sugimura K; Maeda K; Kawamata T
    Kobe J Med Sci; 2010 Aug; 56(1):E29-37. PubMed ID: 21063144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity.
    Verstynen T; Diedrichsen J; Albert N; Aparicio P; Ivry RB
    J Neurophysiol; 2005 Mar; 93(3):1209-22. PubMed ID: 15525809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional cerebral blood flow changes in human brain related to ipsilateral and contralateral complex hand movements--a PET study.
    Kawashima R; Matsumura M; Sadato N; Naito E; Waki A; Nakamura S; Matsunami K; Fukuda H; Yonekura Y
    Eur J Neurosci; 1998 Jul; 10(7):2254-60. PubMed ID: 9749754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning.
    Orban P; Peigneux P; Lungu O; Albouy G; Breton E; Laberenne F; Benali H; Maquet P; Doyon J
    Neuroimage; 2010 Jan; 49(1):694-702. PubMed ID: 19732838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain activation pattern according to exercise complexity: a functional MRI study.
    Park JW; Kwon YH; Lee MY; Bai D; Nam KS; Cho YW; Lee CH; Jang SH
    NeuroRehabilitation; 2008; 23(3):283-8. PubMed ID: 18560146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural topography and content of movement representations.
    de Lange FP; Hagoort P; Toni I
    J Cogn Neurosci; 2005 Jan; 17(1):97-112. PubMed ID: 15701242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative comparison of functional magnetic resonance imaging with positron emission tomography using a force-related paradigm.
    Dettmers C; Connelly A; Stephan KM; Turner R; Friston KJ; Frackowiak RS; Gadian DG
    Neuroimage; 1996 Dec; 4(3 Pt 1):201-9. PubMed ID: 9345510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of the spontaneous phase transition during bimanual coordination.
    Aramaki Y; Honda M; Okada T; Sadato N
    Cereb Cortex; 2006 Sep; 16(9):1338-48. PubMed ID: 16306323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in brain activity during motor learning measured with PET: effects of hand of performance and practice.
    van Mier H; Tempel LW; Perlmutter JS; Raichle ME; Petersen SE
    J Neurophysiol; 1998 Oct; 80(4):2177-99. PubMed ID: 9772270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation: A functional magnetic resonance imaging study.
    Jäncke L; Specht K; Mirzazade S; Peters M
    Neuroimage; 1999 May; 9(5):497-507. PubMed ID: 10329289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relevance of sensory input for the cerebellar control of movements.
    Jueptner M; Ottinger S; Fellows SJ; Adamschewski J; Flerich L; Müller SP; Diener HC; Thilmann AF; Weiller C
    Neuroimage; 1997 Jan; 5(1):41-8. PubMed ID: 9038283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain activation during execution and motor imagery of novel and skilled sequential hand movements.
    Lacourse MG; Orr EL; Cramer SC; Cohen MJ
    Neuroimage; 2005 Sep; 27(3):505-19. PubMed ID: 16046149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebellum activation associated with performance change but not motor learning.
    Seidler RD; Purushotham A; Kim SG; Uğurbil K; Willingham D; Ashe J
    Science; 2002 Jun; 296(5575):2043-6. PubMed ID: 12065841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebellar activity switches hemispheres with cerebral recovery in aphasia.
    Connor LT; DeShazo Braby T; Snyder AZ; Lewis C; Blasi V; Corbetta M
    Neuropsychologia; 2006; 44(2):171-7. PubMed ID: 16019040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement and generalization of arm motor performance through motor imagery practice.
    Gentili R; Papaxanthis C; Pozzo T
    Neuroscience; 2006 Feb; 137(3):761-72. PubMed ID: 16338093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ipsilateral motor activation during unimanual and bimanual motor tasks.
    Ghacibeh GA; Mirpuri R; Drago V; Jeong Y; Heilman KM; Triggs WJ
    Clin Neurophysiol; 2007 Feb; 118(2):325-32. PubMed ID: 17095289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.