These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

615 related articles for article (PubMed ID: 15249989)

  • 1. Different effects of fatiguing exercise on corticospinal and transcallosal excitability in human hand area motor cortex.
    Edgley SA; Winter AP
    Exp Brain Res; 2004 Dec; 159(4):530-6. PubMed ID: 15249989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability.
    Lang N; Nitsche MA; Paulus W; Rothwell JC; Lemon RN
    Exp Brain Res; 2004 Jun; 156(4):439-43. PubMed ID: 14745467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O; Rothwell J; Rosenkranz K
    Clin Neurophysiol; 2006 Apr; 117(4):855-63. PubMed ID: 16448846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fatiguing unilateral plantar flexions on corticospinal and transcallosal inhibition in the primary motor hand area.
    Matsuura R; Ogata T
    J Physiol Anthropol; 2015 Feb; 34(1):4. PubMed ID: 25857538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability.
    Pitcher JB; Robertson AL; Clover EC; Jaberzadeh S
    Exp Brain Res; 2005 Jan; 160(4):409-17. PubMed ID: 15502993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatiguing intermittent lower limb exercise influences corticospinal and corticocortical excitability in the nonexercised upper limb.
    Takahashi K; Maruyama A; Hirakoba K; Maeda M; Etoh S; Kawahira K; Rothwell JC
    Brain Stimul; 2011 Apr; 4(2):90-6. PubMed ID: 21511209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex.
    Chen R; Yung D; Li JY
    J Neurophysiol; 2003 Mar; 89(3):1256-64. PubMed ID: 12611955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue?
    Benwell NM; Sacco P; Hammond GR; Byrnes ML; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2006 Apr; 170(2):191-8. PubMed ID: 16328285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects.
    Lorenzano C; Gilio F; Inghilleri M; Conte A; Fofi L; Manfredi M; Berardelli A
    Exp Brain Res; 2002 Nov; 147(2):186-92. PubMed ID: 12410333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles.
    Ziemann U; Ishii K; Borgheresi A; Yaseen Z; Battaglia F; Hallett M; Cincotta M; Wassermann EM
    J Physiol; 1999 Aug; 518 ( Pt 3)(Pt 3):895-906. PubMed ID: 10420023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unilateral grip fatigue reduces short interval intracortical inhibition in ipsilateral primary motor cortex.
    Takahashi K; Maruyama A; Maeda M; Etoh S; Hirakoba K; Kawahira K; Rothwell JC
    Clin Neurophysiol; 2009 Jan; 120(1):198-203. PubMed ID: 19028439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN; Bowtell JL; Kossev AR
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced intracortical inhibition and facilitation of corticospinal neurons in musicians.
    Nordstrom MA; Butler SL
    Exp Brain Res; 2002 Jun; 144(3):336-42. PubMed ID: 12021815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Handedness is mainly associated with an asymmetry of corticospinal excitability and not of transcallosal inhibition.
    De Gennaro L; Cristiani R; Bertini M; Curcio G; Ferrara M; Fratello F; Romei V; Rossini PM
    Clin Neurophysiol; 2004 Jun; 115(6):1305-12. PubMed ID: 15134697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitability changes in human corticospinal projections to muscles moving hand and fingers while viewing a reaching and grasping action.
    Montagna M; Cerri G; Borroni P; Baldissera F
    Eur J Neurosci; 2005 Sep; 22(6):1513-20. PubMed ID: 16190904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue.
    McNeil CJ; Martin PG; Gandevia SC; Taylor JL
    J Physiol; 2009 Dec; 587(Pt 23):5601-12. PubMed ID: 19805743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task-dependent modulation of inputs to proximal upper limb following transcranial direct current stimulation of primary motor cortex.
    Bradnam LV; Stinear CM; Lewis GN; Byblow WD
    J Neurophysiol; 2010 May; 103(5):2382-9. PubMed ID: 20220073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progressive suppression of intracortical inhibition during graded isometric contraction of a hand muscle is not influenced by hand preference.
    Zoghi M; Nordstrom MA
    Exp Brain Res; 2007 Feb; 177(2):266-74. PubMed ID: 16947062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fatigue on corticospinal excitability of the human knee extensors.
    Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL
    Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii.
    Aboodarda SJ; Ĺ ambaher N; Behm DG
    Scand J Med Sci Sports; 2016 Nov; 26(11):1301-1312. PubMed ID: 26633736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.