These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 1525046)
1. Polyunsaturated fatty acids decrease the apparent affinity of vitamin D metabolites for human vitamin D-binding protein. Bouillon R; Xiang DZ; Convents R; Van Baelen H J Steroid Biochem Mol Biol; 1992 Sep; 42(8):855-61. PubMed ID: 1525046 [TBL] [Abstract][Full Text] [Related]
2. Binding properties of plasma vitamin D-binding protein and intestinal 1,25-dihydroxyvitamin D3 receptor in piglets with pseudo-vitamin D-deficiency rickets, type I: treatment effects with pharmacological doses of vitamin D3. Kaune R; Schroeder B; Harmeyer J Arch Biochem Biophys; 1990 Nov; 282(2):326-32. PubMed ID: 2173481 [TBL] [Abstract][Full Text] [Related]
3. Vitamin D-binding protein controls T cell responses to vitamin D. Kongsbak M; von Essen MR; Levring TB; Schjerling P; Woetmann A; Ødum N; Bonefeld CM; Geisler C BMC Immunol; 2014 Sep; 15():35. PubMed ID: 25230725 [TBL] [Abstract][Full Text] [Related]
4. Roles of the structure and orientation of ligands and ligand mimics inside the ligand-binding pocket of the vitamin D-binding protein. Swamy N; Dutta A; Ray R Biochemistry; 1997 Jun; 36(24):7432-6. PubMed ID: 9200691 [TBL] [Abstract][Full Text] [Related]
5. Vitamin D and vitamin-D-binding protein kinetics in patients treated with continuous ambulatory peritoneal dialysis (CAPD). Joffe P; Heaf JG Perit Dial Int; 1989; 9(4):281-4. PubMed ID: 2488382 [TBL] [Abstract][Full Text] [Related]
6. The effect of vitamin D analogs and of vitamin D-binding protein on lymphocyte proliferation. Vanham G; Van Baelen H; Tan BK; Bouillon R J Steroid Biochem; 1988 Apr; 29(4):381-6. PubMed ID: 3374126 [TBL] [Abstract][Full Text] [Related]
7. Vitamin D analogs with low affinity for the vitamin D binding protein: enhanced in vitro and decreased in vivo activity. Bouillon R; Allewaert K; Xiang DZ; Tan BK; van Baelen H J Bone Miner Res; 1991 Oct; 6(10):1051-7. PubMed ID: 1796753 [TBL] [Abstract][Full Text] [Related]
8. Influence of dietary vitamin D3 on the circulating concentration of its active metabolites in the chick and rat. Hughes MR; Baylink DJ; Gonnerman WA; Toverud SU; Ramp WK; Haussler MR Endocrinology; 1977 Mar; 100(3):799-806. PubMed ID: 233823 [TBL] [Abstract][Full Text] [Related]
9. Biological activity assessment of the 26,23-lactones of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 and their binding properties to chick intestinal receptor and plasma vitamin D binding protein. Wilhelm F; Mayer E; Norman AW Arch Biochem Biophys; 1984 Sep; 233(2):322-9. PubMed ID: 6091549 [TBL] [Abstract][Full Text] [Related]
10. C-6 functionalized analogs of 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3: synthesis and binding analysis with vitamin D-binding protein and vitamin D receptor. Addo JK; Swamy N; Ray R Steroids; 1999 Apr; 64(4):273-82. PubMed ID: 10399884 [TBL] [Abstract][Full Text] [Related]
11. Biochemical and preliminary crystallographic characterization of the vitamin D sterol- and actin-binding by human vitamin D-binding protein. Swamy N; Head JF; Weitz D; Ray R Arch Biochem Biophys; 2002 Jun; 402(1):14-23. PubMed ID: 12051678 [TBL] [Abstract][Full Text] [Related]
12. Increased biological activity of 20-epi-1,25-dihydroxyvitamin D3 is due to reduced catabolism and altered protein binding. Dilworth FJ; Calverley MJ; Makin HL; Jones G Biochem Pharmacol; 1994 Mar; 47(6):987-93. PubMed ID: 8147918 [TBL] [Abstract][Full Text] [Related]
13. On the mechanisms for the selective action of vitamin D analogs. Dusso AS; Negrea L; Gunawardhana S; Lopez-Hilker S; Finch J; Mori T; Nishii Y; Slatopolsky E; Brown AJ Endocrinology; 1991 Apr; 128(4):1687-92. PubMed ID: 2004595 [TBL] [Abstract][Full Text] [Related]
14. Erythrocyte fatty acid composition does not influence levels of free, bioavailable, and total 25-hydroxy vitamin D. Carlsson M; Nilsson I; Brudin L; Von SP; Wanby P Scand J Clin Lab Invest; 2017 Feb; 77(1):45-52. PubMed ID: 27905210 [TBL] [Abstract][Full Text] [Related]
15. Selective inhibition of the C5a chemotactic cofactor function of the vitamin D binding protein by 1,25(OH)2 vitamin D3. Shah AB; DiMartino SJ; Trujillo G; Kew RR Mol Immunol; 2006 Mar; 43(8):1109-15. PubMed ID: 16115686 [TBL] [Abstract][Full Text] [Related]
16. Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Arnaud J; Constans J Hum Genet; 1993 Sep; 92(2):183-8. PubMed ID: 8370586 [TBL] [Abstract][Full Text] [Related]
17. Use of surface plasmon resonance in the binding study of vitamin D, metabolites and analogues with vitamin D binding protein. Canoa P; Rivadulla ML; Popplewell J; van Oosten R; Gómez G; Fall Y Anal Bioanal Chem; 2017 Apr; 409(10):2547-2558. PubMed ID: 28116494 [TBL] [Abstract][Full Text] [Related]
18. Relations between vitamin D and fatty acid binding properties of vitamin D-binding protein. Calvo M; Ena JM Biochem Biophys Res Commun; 1989 Aug; 163(1):14-7. PubMed ID: 2505765 [TBL] [Abstract][Full Text] [Related]
19. Probing the vitamin D sterol-binding pocket of human vitamin D-binding protein with bromoacetate affinity labeling reagents containing the affinity probe at C-3, C-6, C-11, and C-19 positions of parent vitamin D sterols. Swamy N; Addo J; Vskokovic MR; Ray R Arch Biochem Biophys; 2000 Jan; 373(2):471-8. PubMed ID: 10620374 [TBL] [Abstract][Full Text] [Related]
20. Effects of vitamin D-binding protein on bone resorption stimulated by 1,25 dihydroxyvitamin D3. Vargas S; Bouillon R; Van Baelen H; Raisz LG Calcif Tissue Int; 1990 Sep; 47(3):164-8. PubMed ID: 2224592 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]