These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15250558)

  • 1. Raman-shifted eye-safe aerosol lidar.
    Mayor SD; Spuler SM
    Appl Opt; 2004 Jul; 43(19):3915-24. PubMed ID: 15250558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman shifter optimized for lidar at a 1.5 microm wavelength.
    Spuler SM; Mayor SD
    Appl Opt; 2007 May; 46(15):2990-5. PubMed ID: 17514248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 mum by airborne hard-target-calibrated Nd:YAG /methane Raman lidar.
    Spinhirne JD; Chudamani S; Cavanaugh JF; Bufton JL
    Appl Opt; 1997 May; 36(15):3475-90. PubMed ID: 18253366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1064 nm rotational Raman polarization lidar for profiling aerosol and cloud characteristics.
    Wang L; Yin Z; Lu T; Yi Y; Dong X; Dai Y; Bu Z; Chen Y; Wang X
    Opt Express; 2024 Apr; 32(9):14963-14977. PubMed ID: 38859159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide.
    Nakazato M; Nagai T; Sakai T; Hirose Y
    Appl Opt; 2007 Apr; 46(12):2269-79. PubMed ID: 17415396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SRS conversion efficiency assessment of a single cell Raman gas mixture for DIAL ozone lidar.
    Raman MR; Chen WN
    Appl Opt; 2024 Feb; 63(4):874-887. PubMed ID: 38437383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upgraded 1.56 microm lidar at IMK-IFU with 0.28 J/pulse.
    Trickl T
    Appl Opt; 2010 Jul; 49(19):3732-40. PubMed ID: 20648139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane detection with a narrow-band source at 3.4 µm based on a Nd:YAG pump laser and a combination of stimulated Raman scattering and difference frequency mixing.
    Lancaster DG; Dawes JM
    Appl Opt; 1996 Jul; 35(21):4041-5. PubMed ID: 21102808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined Raman-elastic backscatter lidar method for the measurement of backscatter ratios.
    Moosmüller H; Wilkerson TD
    Appl Opt; 1997 Jul; 36(21):5144-7. PubMed ID: 18259327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1st-Stokes and 2nd-Stokes dual-wavelength operation and mode-locking modulation in diode-side-pumped Nd:YAG/BaWO4 Raman laser.
    Shen H; Wang Q; Zhang X; Chen X; Cong Z; Wu Z; Bai F; Lan W; Gao L
    Opt Express; 2012 Jul; 20(16):17823-32. PubMed ID: 23038333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Raman laser system using stimulated Brillouin scattering with different confocal parameters for CH(4).
    Park YH; Lee DW; Kong HJ; Kim Y
    Appl Opt; 2007 Aug; 46(22):5516-21. PubMed ID: 17676168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parametric study of an excimer-pumped, nitrogen Raman shifter for lidar applications.
    Bisson SE
    Appl Opt; 1995 Jun; 34(18):3406-12. PubMed ID: 21052152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Stokes wavelength generation in H(2), D(2), and CH(4) for lidar aerosol measurements.
    Chu Z; Singh UN; Wilkerson TD
    Appl Opt; 1991 Oct; 30(30):4350-7. PubMed ID: 20717207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the 2.8 microm emission doubly shifted Raman laser using stimulated Brillouin scattering in a cascaded cavity.
    Park YH; Lee DW; Kong HJ; Kim YS
    Appl Opt; 2008 Jul; 47(20):3646-50. PubMed ID: 18617981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient 1.8 μm KTiOPO4 optical parametric oscillator pumped within an Nd:YAG/SrWO4 Raman laser.
    Bai F; Wang Q; Liu Z; Zhang X; Sun W; Wan X; Li P; Jin G; Zhang H
    Opt Lett; 2011 Mar; 36(6):813-5. PubMed ID: 21403693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a high spectral resolution lidar based on confocal Fabry-Perot spectral filters.
    Hoffman DS; Repasky KS; Reagan JA; Carlsten JL
    Appl Opt; 2012 Sep; 51(25):6233-44. PubMed ID: 22945172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two stage Innoslab amplifier for energy scaling from 100 to >500  mJ for future lidar applications.
    Strotkamp M; Elsen F; Löhring J; Traub M; Hoffmann D
    Appl Opt; 2017 Apr; 56(10):2886-2892. PubMed ID: 28375257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulated Raman scattering holography for time-resolved imaging of methane gas.
    Amer E; Gren P; Edenharder S; Sjödahl M
    Appl Opt; 2016 May; 55(13):3429-34. PubMed ID: 27140351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of intracavity KTP-based Raman generation between Nd:YAP and Nd:YAG lasers operating on the (4)F(3/2) → (4)I(13/2) transition.
    Huang YJ; Chen YF; Chen WD; Zhang G
    Opt Express; 2015 Apr; 23(8):10435-43. PubMed ID: 25969085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms.
    Refaat TF; Ismail S; Nehrir AR; Hair JW; Crawford JH; Leifer I; Shuman T
    Opt Express; 2013 Dec; 21(25):30415-32. PubMed ID: 24514619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.