These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 15250558)

  • 21. A three-beam aerosol backscatter correlation lidar for wind profiling.
    Prasad NS; Mylapore AR
    Opt Eng; 2017 Mar; 56(3):. PubMed ID: 33005063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initial measurements using a 1.54-microm eyesafe Raman shifted lidar.
    Patterson EM; Roberts DW; Gimmestad GG
    Appl Opt; 1989 Dec; 28(23):4978-81. PubMed ID: 20555984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mie lidar observations of lower tropospheric aerosols and clouds.
    Veerabuthiran S; Razdan AK; Jindal MK; Dubey DK; Sharma RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 84(1):32-6. PubMed ID: 21975046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Appl Opt; 2005 Mar; 44(7):1315-22. PubMed ID: 15765712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-power dual-wavelength eye-safe ceramic Nd:YAG/SrWO(4) Raman laser operating at 1501 and 1526 nm.
    Zhang H; Li P; Wang Q; Chen X; Zhang X; Chang J; Tao X
    Appl Opt; 2014 Nov; 53(31):7189-94. PubMed ID: 25402875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Study on the nonlinear Raman lidar monitoring the CO2 gas].
    Zhao YF; Zhang YC; Hong GL; Liu XQ; Cao KF; Fang X; Tao ZM; Yu SH; Qu KF; Shao SS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May; 26(5):794-7. PubMed ID: 16883838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 1164.4  nm and 1174.7  nm dual-wavelength Nd : GdVO
    Wang X; Wang X; Zheng Z; Qiao X; Dong J
    Appl Opt; 2018 Apr; 57(12):3198-3204. PubMed ID: 29714306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of an eye-safe solid-state tunable laser transmitter in the 1.4-1.5 microm wavelength region based on Cr4+:YAG crystal for lidar applications.
    Petrova-Mayor A; Wulfmeyer V; Weibring P
    Appl Opt; 2008 Apr; 47(10):1522-34. PubMed ID: 18382581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aerosol microphysical parameters' vertical profiles measured by a dual Raman-Mie lidar during 2007-2013 at Hefei, China.
    Hu S; Xu C; Ji Y; Hu H
    Appl Opt; 2019 Feb; 58(6):1537-1546. PubMed ID: 30874044
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers.
    de Schoulepnikoff L; Mitev V; Simeonov V; Calpini B; van den Bergh H
    Appl Opt; 1997 Jul; 36(21):5026-43. PubMed ID: 18259311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations.
    Sasano Y; Browell EV
    Appl Opt; 1989 May; 28(9):1670-9. PubMed ID: 20548724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Raman shifting of Nd:YAG laser radiation in methane:an efficient method to generate 3-microm radiation for medical uses.
    Guntermann C; Gathen VS; Döbele HF
    Appl Opt; 1989 Jan; 28(1):135-8. PubMed ID: 20548439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Second-Stokes dual-wavelength operation at 1321 and 1325 nm ceramic Nd:YAG/BaWO4 Raman laser.
    Shen H; Wang Q; Zhang X; Chen X; Bai F; Liu Z; Gao L; Cong Z; Wu Z; Wang W; Zhang Y; Lan W; Wang C
    Opt Lett; 2012 Nov; 37(21):4519-21. PubMed ID: 23114349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system.
    Ostermeyer M; Kappe P; Menzel R; Wulfmeyer V
    Appl Opt; 2005 Feb; 44(4):582-90. PubMed ID: 15726956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Appl Opt; 2005 Mar; 44(7):1305-14. PubMed ID: 15765711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal.
    Jianhong H; Jipeng L; Rongbing S; Jinghui L; Hui Z; Canhua X; Fei S; Zongzhi L; Jian Z; Wenrong Z; Wenxiong L
    Opt Lett; 2007 May; 32(9):1096-8. PubMed ID: 17410247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles.
    Hair JW; Caldwell LM; Krueger DA; She CY
    Appl Opt; 2001 Oct; 40(30):5280-94. PubMed ID: 18364809
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.
    Fraczek M; Behrendt A; Schmitt N
    Opt Express; 2013 Jul; 21(14):16398-414. PubMed ID: 23938491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-pass mode-locked or Q-switched pump operation of D2 gas-in-glass fiber Raman lasers operating at 1.56-microm wavelength.
    Chraplyvy AR; Stone J
    Opt Lett; 1985 Jul; 10(7):344-6. PubMed ID: 19724442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of 1.15 µm Nd:YAG\KTA Raman lasers with 234 and 671 cm
    Duan Y; Zhu H; Wang H; Zhang Y; Chen Z
    Opt Express; 2016 Mar; 24(5):5565-5571. PubMed ID: 29092378
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.