BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 15250635)

  • 21. A Kalman filter approach to track fast impedance changes in electrical impedance tomography.
    Vauhkonen M; Karjalainen PA; Kaipio JP
    IEEE Trans Biomed Eng; 1998 Apr; 45(4):486-93. PubMed ID: 9556965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reconstruction of conductivity changes and electrode movements based on EIT temporal sequences.
    Dai T; Gómez-Laberge C; Adler A
    Physiol Meas; 2008 Jun; 29(6):S77-88. PubMed ID: 18544802
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [A data acquisition system for induced current electrical impedance tomography].
    Xiang H; Dong X; Qin M; You F; Shi X; Fu F; Liu R; Ma J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):819-23. PubMed ID: 16156281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
    Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS
    Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of applied and induced current electrical impedance tomography.
    Tanguay LF; Gagnon H; Guardo R
    IEEE Trans Biomed Eng; 2007 Sep; 54(9):1643-9. PubMed ID: 17867356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a microscopic electrical impedance tomography system using two current injections.
    Liu Q; Oh TI; Wi H; Lee EJ; Seo JK; Woo EJ
    Physiol Meas; 2011 Sep; 32(9):1505-16. PubMed ID: 21828912
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial resolution improvement of 3D EIT images by the shrinking sLORETA-FOCUSS algorithm.
    Dong G; Liu H; Bayford RH; Yerworth R; Schimpf PH; Yan W
    Physiol Meas; 2005 Apr; 26(2):S199-208. PubMed ID: 15798233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analytical solutions of electric potential and impedance for a multilayered spherical volume conductor excited by time-harmonic electric current source: application in brain EIT.
    Xiao C; Lei Y
    Phys Med Biol; 2005 Jun; 50(11):2663-74. PubMed ID: 15901961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linear superposition electrical impedance tomography imaging with multiple electrical/biopsy probes.
    Ivorra A; Shini Ast M; Rubinsky B
    IEEE Trans Biomed Eng; 2009 May; 56(5):1465-72. PubMed ID: 19188117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional electrical impedance tomography.
    Metherall P; Barber DC; Smallwood RH; Brown BH
    Nature; 1996 Apr; 380(6574):509-12. PubMed ID: 8606768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An oppositional biogeography-based optimization technique to reconstruct organ boundaries in the human thorax using electrical impedance tomography.
    Rashid A; Kim BS; Khambampati AK; Kim S; Kim KY
    Physiol Meas; 2011 Jul; 32(7):767-96. PubMed ID: 21646708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging.
    Oh TI; Koo H; Lee KH; Kim SM; Lee J; Kim SW; Seo JK; Woo EJ
    Physiol Meas; 2008 Mar; 29(3):295-307. PubMed ID: 18367806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental justification for using 3D conductivity reconstructions in electrical impedance tomography.
    Halter RJ; Hartov A; Paulsen KD
    Physiol Meas; 2007 Jul; 28(7):S115-27. PubMed ID: 17664629
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accounting for hardware imperfections in EIT image reconstruction algorithms.
    Hartinger AE; Gagnon H; Guardo R
    Physiol Meas; 2007 Jul; 28(7):S13-27. PubMed ID: 17664631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A real-time electrical impedance tomograph.
    Edic PM; Saulnier GJ; Newell JC; Isaacson D
    IEEE Trans Biomed Eng; 1995 Sep; 42(9):849-59. PubMed ID: 7558059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint.
    Cohen-Bacrie C; Goussard Y; Guardo R
    IEEE Trans Med Imaging; 1997 Oct; 16(5):562-71. PubMed ID: 9368111
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three-dimensional electrical impedance tomography: a topology optimization approach.
    Mello LA; de Lima CR; Amato MB; Lima RG; Silva EC
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):531-40. PubMed ID: 18269988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real-time management of faulty electrodes in electrical impedance tomography.
    Hartinger AE; Guardo R; Adler A; Gagnon H
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):369-77. PubMed ID: 19272943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minimizing EIT image artefacts from mesh variability in finite element models.
    Adler A; Lionheart WR
    Physiol Meas; 2011 Jul; 32(7):823-34. PubMed ID: 21646712
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.