These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15250699)

  • 41. Quantum mechanical free energy barrier for an enzymatic reaction.
    Rod TH; Ryde U
    Phys Rev Lett; 2005 Apr; 94(13):138302. PubMed ID: 15904045
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structures of human 108V and 108M catechol O-methyltransferase.
    Rutherford K; Le Trong I; Stenkamp RE; Parson WW
    J Mol Biol; 2008 Jun; 380(1):120-30. PubMed ID: 18486144
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How Large Should the QM Region Be in QM/MM Calculations? The Case of Catechol O-Methyltransferase.
    Kulik HJ; Zhang J; Klinman JP; Martínez TJ
    J Phys Chem B; 2016 Nov; 120(44):11381-11394. PubMed ID: 27704827
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular dynamics simulations of the enzyme catechol-O-methyltransferase: methodological issues.
    Bunker A; Männistö P; St Pierre JF; Róg T; Pomorski P; Stimson L; Karttunen M
    SAR QSAR Environ Res; 2008; 19(1-2):179-89. PubMed ID: 18311643
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The use of isotope effects to determine enzyme mechanisms.
    Cleland WW
    Arch Biochem Biophys; 2005 Jan; 433(1):2-12. PubMed ID: 15581561
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The 108M polymorph of human catechol O-methyltransferase is prone to deformation at physiological temperatures.
    Rutherford K; Bennion BJ; Parson WW; Daggett V
    Biochemistry; 2006 Feb; 45(7):2178-88. PubMed ID: 16475806
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A computational study of the intramolecular deprotonation of a carbon acid in aqueous solution.
    Sharma R; Thorley M; McNamara JP; Watt CI; Burton NA
    Phys Chem Chem Phys; 2008 May; 10(18):2475-87. PubMed ID: 18446247
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase.
    Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH
    Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of pressure on deuterium isotope effects of yeast alcohol dehydrogenase using alternative substrates.
    Park H; Kidman G; Northrop DB
    Arch Biochem Biophys; 2005 Jan; 433(1):335-40. PubMed ID: 15581588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theoretical study of the methyl transfer in guanidinoacetate methyltransferase.
    Velichkova P; Himo F
    J Phys Chem B; 2006 Jan; 110(1):16-9. PubMed ID: 16471489
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rate-limiting steps in oxidations catalyzed by rabbit cytochrome P450 1A2.
    Guengerich FP; Krauser JA; Johnson WW
    Biochemistry; 2004 Aug; 43(33):10775-88. PubMed ID: 15311939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of product specificity of AdoMet methylation catalyzed by lysine methyltransferases: transcriptional factor p53 methylation by histone lysine methyltransferase SET7/9.
    Zhang X; Bruice TC
    Biochemistry; 2008 Mar; 47(9):2743-8. PubMed ID: 18260647
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Factors That Determine the Variation of Equilibrium and Kinetic Properties of QM/MM Enzyme Simulations: QM Region, Conformation, and Boundary Condition.
    Demapan D; Kussmann J; Ochsenfeld C; Cui Q
    J Chem Theory Comput; 2022 Apr; 18(4):2530-2542. PubMed ID: 35226489
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism.
    Lu Y; Qu F; Moore B; Endicott D; Kuester W
    J Org Chem; 2008 Jul; 73(13):4763-70. PubMed ID: 18543993
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring the Dependence of QM/MM Calculations of Enzyme Catalysis on the Size of the QM Region.
    Jindal G; Warshel A
    J Phys Chem B; 2016 Sep; 120(37):9913-21. PubMed ID: 27552257
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantum chemical study of the thermal decomposition of o-quinone methide (6-methylene-2,4-cyclohexadien-1-one).
    Silva Gd; Bozzelli JW
    J Phys Chem A; 2007 Aug; 111(32):7987-94. PubMed ID: 17645323
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Competitive 15N kinetic isotope effects of nitrogenase-catalyzed dinitrogen reduction.
    Sra AK; Hu Y; Martin GE; Snow DD; Ribbe MW; Kohen A
    J Am Chem Soc; 2004 Oct; 126(40):12768-9. PubMed ID: 15469259
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Classical and quantum mechanical/molecular mechanical molecular dynamics simulations of alanine dipeptide in water: comparisons with IR and vibrational circular dichroism spectra.
    Kwac K; Lee KK; Han JB; Oh KI; Cho M
    J Chem Phys; 2008 Mar; 128(10):105106. PubMed ID: 18345930
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dissection of the physiological interconversion of 5alpha-DHT and 3alpha-diol by rat 3alpha-HSD via transient kinetics shows that the chemical step is rate-determining: effect of mutating cofactor and substrate-binding pocket residues on catalysis.
    Heredia VV; Penning TM
    Biochemistry; 2004 Sep; 43(38):12028-37. PubMed ID: 15379543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.