BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 15250723)

  • 61. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
    Roy S; Tanious FA; Wilson WD; Ly DH; Armitage BA
    Biochemistry; 2007 Sep; 46(37):10433-43. PubMed ID: 17718513
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution.
    Phan AT; Kuryavyi V; Luu KN; Patel DJ
    Nucleic Acids Res; 2007; 35(19):6517-25. PubMed ID: 17895279
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification and characterization of a new G-quadruplex forming region within the kRAS promoter as a transcriptional regulator.
    Morgan RK; Batra H; Gaerig VC; Hockings J; Brooks TA
    Biochim Biophys Acta; 2016 Feb; 1859(2):235-45. PubMed ID: 26597160
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Stability and kinetics of c-MYC promoter G-quadruplexes studied by single-molecule manipulation.
    You H; Wu J; Shao F; Yan J
    J Am Chem Soc; 2015 Feb; 137(7):2424-7. PubMed ID: 25654467
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Sequence effects in single-base loops for quadruplexes.
    Guédin A; De Cian A; Gros J; Lacroix L; Mergny JL
    Biochimie; 2008 May; 90(5):686-96. PubMed ID: 18294461
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A Thermodynamic Perspective on Potential G-Quadruplex Structures as Silencer Elements in the MYC Promoter.
    Jana J; Weisz K
    Chemistry; 2020 Dec; 26(71):17242-17251. PubMed ID: 32761687
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: insights into loop interactions of the parallel G-quadruplexes.
    Agrawal P; Hatzakis E; Guo K; Carver M; Yang D
    Nucleic Acids Res; 2013 Dec; 41(22):10584-92. PubMed ID: 24005038
    [TBL] [Abstract][Full Text] [Related]  

  • 68. (3 + 1) Assembly of three human telomeric repeats into an asymmetric dimeric G-quadruplex.
    Zhang N; Phan AT; Patel DJ
    J Am Chem Soc; 2005 Dec; 127(49):17277-85. PubMed ID: 16332077
    [TBL] [Abstract][Full Text] [Related]  

  • 69. NM23-H2 may play an indirect role in transcriptional activation of c-myc gene expression but does not cleave the nuclease hypersensitive element III(1).
    Dexheimer TS; Carey SS; Zuohe S; Gokhale VM; Hu X; Murata LB; Maes EM; Weichsel A; Sun D; Meuillet EJ; Montfort WR; Hurley LH
    Mol Cancer Ther; 2009 May; 8(5):1363-77. PubMed ID: 19435876
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Triplex forming ability of a c-myc promoter element predicts promoter strength.
    Firulli AB; Maibenco DC; Kinniburgh AJ
    Arch Biochem Biophys; 1994 Apr; 310(1):236-42. PubMed ID: 8161210
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold.
    Luu KN; Phan AT; Kuryavyi V; Lacroix L; Patel DJ
    J Am Chem Soc; 2006 Aug; 128(30):9963-70. PubMed ID: 16866556
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of loops in the guanine quadruplex formation by DNA/RNA hybrid analogs of G4T4G4.
    Vondrusková J; Kypr J; Kejnovská I; Fialová M; Vorlícková M
    Int J Biol Macromol; 2008 Dec; 43(5):463-7. PubMed ID: 18812187
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Unfolding of G-quadruplexes: energetic, and ion and water contributions of G-quartet stacking.
    Olsen CM; Gmeiner WH; Marky LA
    J Phys Chem B; 2006 Apr; 110(13):6962-9. PubMed ID: 16571009
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4.
    Qin Y; Rezler EM; Gokhale V; Sun D; Hurley LH
    Nucleic Acids Res; 2007; 35(22):7698-713. PubMed ID: 17984069
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Four-stranded DNA structures can be stabilized by two different types of minor groove G:C:G:C tetrads.
    Escaja N; Gómez-Pinto I; Pedroso E; Gonzalez C
    J Am Chem Soc; 2007 Feb; 129(7):2004-14. PubMed ID: 17260988
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Crystal structure of parallel quadruplexes from human telomeric DNA.
    Parkinson GN; Lee MP; Neidle S
    Nature; 2002 Jun; 417(6891):876-80. PubMed ID: 12050675
    [TBL] [Abstract][Full Text] [Related]  

  • 77. G-quadruplexes in promoters throughout the human genome.
    Huppert JL; Balasubramanian S
    Nucleic Acids Res; 2007; 35(2):406-13. PubMed ID: 17169996
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Intramolecular DNA quadruplexes with different arrangements of short and long loops.
    Rachwal PA; Findlow IS; Werner JM; Brown T; Fox KR
    Nucleic Acids Res; 2007; 35(12):4214-22. PubMed ID: 17576685
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter.
    Dexheimer TS; Sun D; Hurley LH
    J Am Chem Soc; 2006 Apr; 128(16):5404-15. PubMed ID: 16620112
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structure of human telomeric DNA in crowded solution.
    Heddi B; Phan AT
    J Am Chem Soc; 2011 Jun; 133(25):9824-33. PubMed ID: 21548653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.