BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15250769)

  • 1. Nonintrusive, noncontacting frequency-domain photothermal radiometry and luminescence depth profilometry of carious and artificial subsurface lesions in human teeth.
    Jeon RJ; Mandelis A; Sanchez V; Abrams SH
    J Biomed Opt; 2004; 9(4):804-19. PubMed ID: 15250769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro detection and quantification of enamel and root caries using infrared photothermal radiometry and modulated luminescence.
    Jeon RJ; Hellen A; Matvienko A; Mandelis A; Abrams SH; Amaechi BT
    J Biomed Opt; 2008; 13(3):034025. PubMed ID: 18601570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative evaluation of the kinetics of human enamel simulated caries using photothermal radiometry and modulated luminescence.
    Hellen A; Mandelis A; Finer Y; Amaechi BT
    J Biomed Opt; 2011 Jul; 16(7):071406. PubMed ID: 21806252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection ability and direction effect of photothermal-radiometry and modulated-luminescence for non-cavitated approximal caries.
    Xing H; Eckert GJ; Ando M
    J Dent; 2019 Nov; 90():103221. PubMed ID: 31678477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnosis of pit and fissure caries using frequency-domain infrared photothermal radiometry and modulated laser luminescence.
    Jeon RJ; Han C; Mandelis A; Sanchez V; Abrams SH
    Caries Res; 2004; 38(6):497-513. PubMed ID: 15528904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence.
    Nicolaides L; Mandelis A; Abrams SH
    J Biomed Opt; 2000 Jan; 5(1):31-9. PubMed ID: 10938763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of interproximal demineralized lesions on human teeth in vitro using frequency-domain infrared photothermal radiometry and modulated luminescence.
    Jeon RJ; Matvienko A; Mandelis A; Abrams SH; Amaechi BT; Kulkarni G
    J Biomed Opt; 2007; 12(3):034028. PubMed ID: 17614736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of angle on photothermal radiometry and modulated luminescence (PTR/LUM) value.
    Xing H; Eckert GJ; Ando M
    J Dent; 2023 May; 132():104500. PubMed ID: 37015184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vitro detection of artificial caries on vertical dental cavity walls using infrared photothermal radiometry and modulated luminescence.
    Kim J; Mandelis A; Abrams SH; Vu JT; Amaechi BT
    J Biomed Opt; 2012 Dec; 17(12):127001. PubMed ID: 23203324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative remineralization evolution kinetics of artificially demineralized human enamel using photothermal radiometry and modulated luminescence.
    Hellen A; Mandelis A; Finer Y; Amaechi BT
    J Biophotonics; 2011 Nov; 4(11-12):788-804. PubMed ID: 21761572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence.
    Nicolaides L; Feng C; Mandelis A; Abrams SH
    Appl Opt; 2002 Feb; 41(4):768-77. PubMed ID: 11993925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermophotonic lock-in imaging of early demineralized and carious lesions in human teeth.
    Tabatabaei N; Mandelis A; Amaechi BT
    J Biomed Opt; 2011 Jul; 16(7):071402. PubMed ID: 21806248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of distance and tooth structure on laser fluorescence caries detection.
    Markowitz K; Stenvall RM; Graye M
    Oper Dent; 2012; 37(2):150-60. PubMed ID: 22166110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of photothermal radiometry and modulated luminescence, intraoral radiography, and cone beam computed tomography for detection of natural caries under restorations.
    Dayo AF; Amaechi BT; Noujeim M; Deahl ST; Gakunga P; Katkar R
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2020 May; 129(5):539-548. PubMed ID: 31956069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study to quantify demineralized enamel in deciduous and permanent teeth using laser- and light-induced fluorescence techniques.
    Ando M; van Der Veen MH; Schemehorn BR; Stookey GK
    Caries Res; 2001; 35(6):464-70. PubMed ID: 11799288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Centre Clinical Evaluation of Photothermal Radiometry and Luminescence Correlated with International Benchmarks for Caries Detection.
    Silvertown JD; Abrams SH; Sivagurunathan KS; Kennedy J; Jeon J; Mandelis A; Hellen A; Hellen W; Elman G; Ehrlich R; Chouljian R; Finer Y; Amaechi BT
    Open Dent J; 2017; 11():636-647. PubMed ID: 29290842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the way to detect cracks in teeth.
    Abrams S
    Dent Today; 2013 Jul; 32(7):104, 106. PubMed ID: 23926716
    [No Abstract]   [Full Text] [Related]  

  • 18. Characterizing and identifying incipient carious lesions in dental enamel using micro-Raman spectroscopy.
    Mohanty B; Dadlani D; Mahoney D; Mann AB
    Caries Res; 2013; 47(1):27-33. PubMed ID: 23051625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optothermophysical properties of demineralized human dental enamel determined using photothermally generated diffuse photon density and thermal-wave fields.
    Hellen A; Matvienko A; Mandelis A; Finer Y; Amaechi BT
    Appl Opt; 2010 Dec; 49(36):6938-51. PubMed ID: 21173829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histological, morphological, profilometric and optical changes of human tooth enamel after microabrasion.
    Schmidlin PR; Göhring TN; Schug J; Lutz F
    Am J Dent; 2003 Sep; 16 Spec No():4A-8A. PubMed ID: 14674490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.